Better living through chemistry

January 27. 3.29 – 3.04 Bya (billion years ago)

Chemistry plays a big role once Earth forms. Different mineral species appear, with different chemical compositions. Magnesium-heavy olivine sinks to the lower mantle of the Earth. Aluminum-rich feldspars float to the top.

Chemistry is an example of what William Abler calls “the particulate principle of self-diversifying systems,” what you get when a collection of discrete units (atoms) can combine according to definite rules to create larger units (molecules) whose properties aren’t just intermediate between the constituents. Paint is not an example. Red paint plus white paint is just pink paint. But atoms and molecules are: two moles of hydrogen gas plus one mole of oxygen gas, compounded, make something very different, one mole of liquid water.

A lot of important chemical principles are summed up in the periodic table.

periodictable copy

On the far right are atoms that have their electron shells filled, and don’t feel like combining with anyone. Most, but not all the way, to the right are atoms with almost all their shells filled, just looking for an extra electron or two. (Think oxygen, O, with slots for two extra electrons). On the left are atoms with a few extra electrons they can share. (Think hydrogen, H, each atom with an extra electron it’s willing to share with, say, oxygen.) In the middle are atoms that could go either way, including metals that like to pool their electrons in a big cloud, and conduct electricity and heat easily. (Think of Earth’s core of molten iron, Fe, a big electric dynamo.)

Another example of “the particulate principle of self-diversifying systems” is human language. Consider speech sounds, for example. You’ve got small discrete units (phonemes, the sounds we write b, p, s, k, ch, sh, and so on) that can combine according to rules to give syllables. Some syllables are possible, according to the rules of English, others not. Star and spiky, thole and plast, are possible English words, tsar and psyche are not (at least if you pronounce all the consonants, the way Russians or Greeks do), nor tlaps nor bratz (if you actually try to pronounce the z). Thirty years ago app, blog, and twerk were not words in the English language, but they were possible words, according to English sound laws.

You can make a periodic table of consonants.


Across the top are the different places in the vocal tract where you block the flow of air. Along the left side are different ways of blocking the flow (stopping it completely –t-, letting it leak out –s-, etc.) The table can explain why, for example, we use in for intangible and indelicate, but switch to im for impossible and imbalance. (The table contains sounds we don’t use in English, and uses a special alphabet with one letter per phoneme.) This is why a book title like The Atoms of Language makes sense (a good book by the way).

A lot of the major leaps in complexity in the history of the universe (the ones that go beyond just already existing stuff organizing itself in clumps and swirls and stripes) happen when brand new kinds of stuff appears because a new particulate system comes online: when elementary particles combine to make atoms, atoms combine to make molecules, and multiple systems (nucleotides to make genes, amino acids to make proteins) combine to make life.


One thought on “Better living through chemistry

  1. Pingback: Better living through chemistry

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s