Tag Archives: Fermi paradox

In memoriam, Paleozoic

260 – 245 million years ago

Alfred, Lord Tennyson, wrote his poem “In Memoriam AHH,” in response to the death of his friend Arthur Henry Hallam. Several cantos consider the bleak lessons of paleontology – not just the myriads of deaths, but the specter of species extinction. Tennyson finished the poem in 1849, a decade before “The Origin of Species,” when the possibility of non-divinely-directed evolution and the reality of mass extinctions like the end-Permian were becoming part of general awareness.

LV

Are God and Nature then at strife,
That Nature lends such evil dreams?
So careful of the type she seems,
So careless of the single life;

That I, considering everywhere
Her secret meaning in her deeds,
And finding that of fifty seeds
She often brings but one to bear,

I falter where I firmly trod,
And falling with my weight of cares
Upon the great world’s altar-stairs
That slope thro’ darkness up to God,

I stretch lame hands of faith, and grope,
And gather dust and chaff, and call
To what I feel is Lord of all,
And faintly trust the larger hope.

LVI

‘So careful of the type?’ but no.
From scarped cliff and quarried stone
She cries, ‘A thousand types are gone:
I care for nothing, all shall go.

‘Thou makest thine appeal to me:
I bring to life, I bring to death:
The spirit does but mean the breath:
I know no more.’ And he, shall he,

Man, her last work, who seem’d so fair,
Such splendid purpose in his eyes,
Who roll’d the psalm to wintry skies,
Who built him fanes of fruitless prayer,

Who trusted God was love indeed
And love Creation’s final law—
Tho’ Nature, red in tooth and claw
With ravine, shriek’d against his creed—

Who loved, who suffer’d countless ills,
Who battled for the True, the Just,
Be blown about the desert dust,
Or seal’d within the iron hills?

For one answer to Tennyson’s anguished question about human extinction, there’s an argument that says we can estimate how much longer humanity has got from just basic probability theory. It comes from astrophysicist Richard Gott, and goes like this: Homo sapiens has been around about 200,000 years. It’s not very likely that we’re living at the very beginning or very end of our species’ history, just like it’s not very likely that a name chosen at random from the phone book will come at the very beginning or the very end. Specifically, there’s only a 2.5% chance that we’re living in the first 2.5% of our species’ life span, and only a 2.5% chance we’re living in the last 2.5% of our species’ life span. So do the math, and there’s a 95% probability that our species will last somewhere between .2 million and 8 million years.

This might also explain the Fermi paradox – we, and other intelligent species aren’t likely to colonize the galaxy. But it’s only fair to add that a lot of other people (the physicist Freeman Dyson, for example) think this gloomily Tennysonian conclusion is an abuse of probability theory.

For more on Bayes’ Rule, and the future of humanity, here’s a recent book, The Doomsday Calculation.

In memoriam, Paleozoic

256-243 million years ago

Alfred, Lord Tennyson, wrote his poem “In Memoriam AHH,” in response to the death of his friend Arthur Henry Hallam. Several cantos consider the bleak lessons of paleontology – not just the myriads of deaths, but the specter of species extinction. Tennyson finished the poem in 1849, a decade before “The Origin of Species,” when the possibility of non-divinely-directed evolution and the reality of mass extinctions like the end-Permian were becoming part of general awareness.

LV

Are God and Nature then at strife,
That Nature lends such evil dreams?
So careful of the type she seems,
So careless of the single life;

That I, considering everywhere
Her secret meaning in her deeds,
And finding that of fifty seeds
She often brings but one to bear,

I falter where I firmly trod,
And falling with my weight of cares
Upon the great world’s altar-stairs
That slope thro’ darkness up to God,

I stretch lame hands of faith, and grope,
And gather dust and chaff, and call
To what I feel is Lord of all,
And faintly trust the larger hope.

LVI

‘So careful of the type?’ but no.
From scarped cliff and quarried stone
She cries, ‘A thousand types are gone:
I care for nothing, all shall go.

‘Thou makest thine appeal to me:
I bring to life, I bring to death:
The spirit does but mean the breath:
I know no more.’ And he, shall he,

Man, her last work, who seem’d so fair,
Such splendid purpose in his eyes,
Who roll’d the psalm to wintry skies,
Who built him fanes of fruitless prayer,

Who trusted God was love indeed
And love Creation’s final law—
Tho’ Nature, red in tooth and claw
With ravine, shriek’d against his creed—

Who loved, who suffer’d countless ills,
Who battled for the True, the Just,
Be blown about the desert dust,
Or seal’d within the iron hills?

For one answer to Tennyson’s anguished question about human extinction, there’s an argument that says we can estimate how much longer humanity has got from just basic probability theory. It comes from astrophysicist Richard Gott, and goes like this: Homo sapiens has been around about 200,000 years. It’s not very likely that we’re living at the very beginning or very end of our species’ history, just like it’s not very likely that a name chosen at random from the phone book will come at the very beginning or the very end. Specifically, there’s only a 2.5% chance that we’re living in the first 2.5% of our species’ life span, and only a 2.5% chance we’re living in the last 2.5% of our species’ life span. So do the math, and there’s a 95% probability that our species will last somewhere between .2 million and 8 million years.

This might also explain the Fermi paradox – we, and other intelligent species aren’t likely to colonize the galaxy. But it’s only fair to add that a lot of other people (the physicist Freeman Dyson, for example) think this gloomily Tennysonian conclusion is an abuse of probability theory.

Rare Earth

4.75-4.49 billion years ago

A big day on Logarithmic History, the biggest since the beginning of the year: the origin of our Solar System including planet Earth. First a note on what’s odd about our planetary system.

Two preceding posts wrestled with the Fermi Paradox: If the universe is full of advanced civilizations, why haven’t we seen any sign of them so far? One answer to the paradox might be that our solar system is wildly unusual, so that abodes for the evolution of complex life are rare. We can finally start to address this matter with some real evidence. According to the NASA exoplanet archive, we’ve now discovered 3885 exoplanets (planets outside our solar system; up from 3587 last year at this date), with many more unconfirmed candidates. This is enough to do some statistics, and indications are that our solar system might indeed be out of the ordinary.

grand-tack

Exoplanets smaller than Jupiter are overwhelmingly closer, mostly a lot closer, to their primary stars than Earth is to the Sun. And the same models of planet formation that have done a pretty good job predicting some of the wild variation we see in other systems – “Hot Jupiters” orbiting closer to their primaries than Mercury, “Super Earths” in between Earth and gas giants in size – don’t readily generate systems that look much like ours. One model that does seem to do a good job with our solar system involves something special, a Grand Tack, where Jupiter and Saturn are caught in an orbital resonance that carries them into the inner solar system and back out, shaking up inner-system planet formation in the process. Wild stuff, but another latest model is even wilder: at the beginning of planet formation, there may have been a generation of Super Earths in the inner solar system. The Grand Tack of Jupiter and Saturn would have sent these planets colliding into one another. The Super-Earths and most of the debris of these collisions would have fallen into the sun, but what the debris left would then have condensed into the unusual inner planets we know, Mercury, Venus, Earth, Mars. And Theia. (Theia? you ask. See the next post).

If this model holds up, the formation of our solar system, like other major events in our history, takes on some of the flavor of mythology. This isn’t quite the old story about Chronos slaying Ouranos, and Zeus slaying Chronos. Instead, in the new story, two giants, Jupiter and Saturn, travel closer to the sun and set a generation of Titans – their like will not be there again – to fighting and destroying one another. Jupiter and Saturn depart, and a new generation is spawned from the wreckage. An unlikely sequence of events, but then our planet could be a very unlikely place. And all the more special for that.

In Memoriam, Paleozoic

256-243 million years ago

Alfred, Lord Tennyson, wrote his poem “In Memoriam AHH,” in response to the death of his friend Arthur Henry Hallam. Several cantos consider the bleak lessons of paleontology – not just the myriads of deaths, but the specter of species extinction. Tennyson finished the poem in 1849, a decade before “The Origin of Species,” when the possibility of non-divinely-directed evolution and the reality of mass extinctions like the end-Permian were becoming part of general awareness.

LV

Are God and Nature then at strife,
That Nature lends such evil dreams?
So careful of the type she seems,
So careless of the single life;

That I, considering everywhere
Her secret meaning in her deeds,
And finding that of fifty seeds
She often brings but one to bear,

I falter where I firmly trod,
And falling with my weight of cares
Upon the great world’s altar-stairs
That slope thro’ darkness up to God,

I stretch lame hands of faith, and grope,
And gather dust and chaff, and call
To what I feel is Lord of all,
And faintly trust the larger hope.

LVI

‘So careful of the type?’ but no.
From scarped cliff and quarried stone
She cries, ‘A thousand types are gone:
I care for nothing, all shall go.

‘Thou makest thine appeal to me:
I bring to life, I bring to death:
The spirit does but mean the breath:
I know no more.’ And he, shall he,

Man, her last work, who seem’d so fair,
Such splendid purpose in his eyes,
Who roll’d the psalm to wintry skies,
Who built him fanes of fruitless prayer,

Who trusted God was love indeed
And love Creation’s final law—
Tho’ Nature, red in tooth and claw
With ravine, shriek’d against his creed—

Who loved, who suffer’d countless ills,
Who battled for the True, the Just,
Be blown about the desert dust,
Or seal’d within the iron hills?

For one answer to Tennyson’s anguished question about human extinction, there’s an argument that says we can estimate how much longer humanity has got from just basic probability theory. It comes from astrophysicist Richard Gott, and goes like this: Homo sapiens has been around about 200,000 years. It’s not very likely that we’re living at the very beginning or very end of our species’ history, just like it’s not very likely that a name chosen at random from the phone book will come at the very beginning or the very end. Specifically, there’s only a 2.5% chance that we’re living in the first 2.5% of our species’ life span, and only a 2.5% chance we’re living in the last 2.5% of our species’ life span. So do the math, and there’s a 95% probability that our species will last somewhere between .2 million and 8 million years.

This might also explain the Fermi paradox – we, and other intelligent species aren’t likely to colonize the galaxy. But it’s only fair to add that a lot of other people (the physicist Freeman Dyson, for example) think this gloomily Tennysonian conclusion is an abuse of probability theory.

Rare Earth

4.75-4.50 billion years ago

A big day on Logarithmic History: the origin of our Solar System including planet Earth. First a note on what’s odd about our planetary system.

Two preceding posts wrestled with the Fermi Paradox: If the universe is full of advanced civilizations, why haven’t we seen any sign of them so far? One answer to the paradox might be that our solar system is wildly unusual, so that abodes for the evolution of complex life are rare. We can finally start to address this matter with some real evidence. According to the NASA exoplanet archive, we’ve now discovered 3587 exoplanets (planets outside our solar system; up from 3440 last year at this date), with many more unconfirmed candidates. This is enough to do some statistics, and indications are that our solar system might indeed be out of the ordinary.

grand-tack

Exoplanets smaller than Jupiter are overwhelmingly closer, mostly a lot closer, to their primary stars than Earth is to the Sun. And the same models of planet formation that have done a pretty good job predicting some of the wild variation we see in other systems – “Hot Jupiters” orbiting closer to their primaries than Mercury, “Super Earths” in between Earth and gas giants in size – don’t readily generate systems that look much like ours. One model that does seem to do a good job with our solar system involves something special, a Grand Tack, where Jupiter and Saturn are caught in an orbital resonance that carries them into the inner solar system and back out, shaking up inner-system planet formation in the process. Wild stuff, but the latest model is even wilder: at the beginning of planet formation, there may have been a generation of Super Earths in the inner solar system. The Grand Tack of Jupiter and Saturn would have sent these planets colliding into one another. The Super-Earths and most of the debris of these collisions would have fallen into the sun, but what the debris left would then have condensed into the unusual inner planets we know, Mercury, Venus, Earth, Mars. And Theia. (Theia? you ask. See the next post).

If this model holds up, the formation of our solar system takes on some of the flavor of mythology. This isn’t quite the old story about Chronos slaying Ouranos, and Zeus slaying Chronos. Instead, in the new story, two giants, Jupiter and Saturn, travel closer to the sun and set a generation of Titans – their like will not be there again – to fighting and destroying one another. Jupiter and Saturn depart, and a new generation is spawned from the wreckage. An unlikely sequence of events, but then our planet could be a very unlikely place. And all the more special for that.

In Memoriam Paleozoic

Alfred, Lord Tennyson, wrote his poem “In Memoriam AHH,” in response to the death of his friend Arthur Henry Hallam. Several cantos consider the bleak lessons of paleontology – not just the myriads of deaths, but the specter of species extinction. Tennyson finished the poem in 1849, a decade before “The Origin of Species,” when the possibility of non-divinely-directed evolution and the reality of mass extinctions like the end-Permian were becoming part of general awareness.

LV

Are God and Nature then at strife,
That Nature lends such evil dreams?
So careful of the type she seems,
So careless of the single life;

That I, considering everywhere
Her secret meaning in her deeds,
And finding that of fifty seeds
She often brings but one to bear,

I falter where I firmly trod,
And falling with my weight of cares
Upon the great world’s altar-stairs
That slope thro’ darkness up to God,

I stretch lame hands of faith, and grope,
And gather dust and chaff, and call
To what I feel is Lord of all,
And faintly trust the larger hope.

LVI

‘So careful of the type?’ but no.
From scarped cliff and quarried stone
She cries, ‘A thousand types are gone:
I care for nothing, all shall go.

‘Thou makest thine appeal to me:
I bring to life, I bring to death:
The spirit does but mean the breath:
I know no more.’ And he, shall he,

Man, her last work, who seem’d so fair,
Such splendid purpose in his eyes,
Who roll’d the psalm to wintry skies,
Who built him fanes of fruitless prayer,

Who trusted God was love indeed
And love Creation’s final law—
Tho’ Nature, red in tooth and claw
With ravine, shriek’d against his creed—

Who loved, who suffer’d countless ills,
Who battled for the True, the Just,
Be blown about the desert dust,
Or seal’d within the iron hills?

For one answer to Tennyson’s anguished question about human extinction, there’s an argument that says we can estimate how much longer humanity has got from just basic probability theory. It comes from astrophysicist Richard Gott, and goes like this: Homo sapiens has been around about 200,000 years. It’s not very likely that we’re living at the very beginning or very end of our species’ history, just like it’s not very likely that a name chosen at random from the phone book will come at the very beginning or the very end. Specifically, there’s only a 2.5% chance that we’re living in the first 2.5% of our species’ life span, and only a 2.5% chance we’re living in the last 2.5% of our species’ life span. So do the math, and there’s a 95% probability that our species will last somewhere between .2 million and 8 million years.

This might also explain the Fermi paradox – we, and other intelligent species aren’t likely to colonize the galaxy. But it’s only fair to add that a lot of other people (the physicist Freeman Dyson, for example) think this gloomily Tennysonian conclusion is an abuse of probability theory.

Rare Earth

4.75-4.49 Billion years ago.

A big day on Logarithmic History: the origin of our Solar System including planet Earth. First a note on what’s odd about our planetary system.

Two preceding posts wrestled with the Fermi Paradox: If the universe is full of advanced civilizations, why haven’t we seen any sign of them so far? One answer to the paradox might be that our solar system is wildly unusual, so that abodes for the evolution of complex life are rare. We can finally start to address this matter with some real evidence. According to the NASA exoplanet archive, we’ve now discovered 3440 exoplanets (planets outside our solar system), with many more unconfirmed candidates. This is enough to do some statistics, and indications are that our solar system might indeed be out of the ordinary.

grand-tack

Exoplanets smaller than Jupiter are overwhelmingly closer, mostly a lot closer, to their primary stars than Earth is to the Sun. And the same models of planet formation that have done a pretty good job predicting some of the wild variation we see in other systems – “Hot Jupiters” orbiting closer to their primaries than Mercury, “Super Earths” in between Earth and gas giants in size – don’t readily generate systems that look much like ours. One model that does seem to do a good job with our solar system involves something special, a Grand Tack, where Jupiter and Saturn are caught in an orbital resonance that carries them into the inner solar system and back out, shaking up inner-system planet formation in the process. Wild stuff, but the latest model is even wilder: at the beginning of planet formation, there may have been a generation of Super Earths in the inner solar system. The Grand Tack of Jupiter and Saturn would have sent these planets colliding into one another. The Super-Earths and most of the debris of these collisions would have fallen into the sun, but what the debris left would then have condensed into the unusual inner planets we know, Mercury, Venus, Earth, Mars. And Theia. (Theia? you ask. See the next post).

If this model holds up, the formation of our solar system takes on some of the flavor of mythology. This isn’t quite the old story about Chronos slaying Ouranos, and Zeus slaying Chronos. Instead, in the new story, two giants, Jupiter and Saturn, travel closer to the sun and set a generation of Titans – their like will not be there again – to fighting and destroying one another. Jupiter and Saturn depart, and a new generation arises from the wreckage. An unlikely sequence of events, but then our planet could be a very unlikely place. And all the more special for that.