Tag Archives: insects

Bunches of monkeys

Our descent, then, is the origin of our evil passions!! The devil under form of Baboon is our grandfather.

Charles Darwin, Noteboook M

Maimoun angushti shaitan ast.

(A monkey is the devil’s fingers.)

Tajik proverb

Monkeys and apes are not only exceptionally brainy, but also distinctively social. Most mammals are solitary (apart from mothers and their juvenile offspring of course). Among a minority of mammals, adult males and females set up pairbonds. And some mammals form larger groups. In most cases, however, these are relatively unstructured aggregations: a herd of buffalo is more like a crowd of people than a human community. A handful of mammals – elephants, cetaceans, and the majority of monkeys and apes – form more structured groups, enduring and internally differentiated.

Social evolution is path dependent: primate social organization is affected by ecology, but also has a strong phylogenetic component.  This makes it possible to offer a tentative reconstruction of the stepwise evolution of stable sociality in primates. Here’s an evolutionary tree, showing inferred transitions between solitary living, and multimale/multifemale, unimale/multifemale, and pairbonded groups:

monkey society tree

A diagram of the possible evolutionary dynamics looks like this:

monkey society transition

And the accompanying story goes like this: about 52 million years ago, the solitary nocturnal ancestor of monkeys and apes switched to being diurnal. This allowed for the exploitation of a whole range of new foods, but it also exposed the ancestor to new forms of predation. The first step in the evolution of monkey and ape sociality, then, was aggregation in multimale/multifemale groups to cut predation risk. At first these groups would have been loosely structured and unstable, but eventually they would have evolved into something like what we see today among most Old World monkeys: stable (sometimes lifelong) networks of relatives and friends, dominants and subordinates, nested within enduring communities.

A later development, going back to 20 million years ago or less, was a shift, among some of these social primates, to unimale/multifemale groups, or pair-living family groups.

The inferred development of structured social groups in primates bears a remote similarity to the evolution of eusociality among social insects. According to current theories, the starting point for eusociality is the development of a defended nest site where females lay eggs and raise offspring. Sometimes an established nest site is so valuable that it’s adaptive for the next generation of offspring to stay on when they mature rather trying to found new nests. The eventual result may be the evolution of a highly structured society, with strong reproductive skew: some nest members specialize in reproduction, others in foraging or defending the nest. The latter may evolve into an obligately sterile caste.

Primates too have developed an intensified, structured sociality as a response to obligate group living. But the parallels with eusocial insects go only so far. The great majority of primates give birth to one offspring at a time. There are no queen bee baboons whelping one vast litter after another and pushing subaltern kin into caring for them. This goes for humans as well. Our species matches the social insects in the scale of cooperation, but we manage this through a complicated dance of coalition-building and reputation management. For a primate, building a honey-bee style superorganism has to be an aspiration rather than a reality.beehive state

Consider her ways

98.6 – 93.3 million years ago.

Here is my obituary for Ed Wilson, who died last year, and below some thoughts about ants.

There are some pieces of paleontology that really stand out in the popular imagination. Dinosaurs are so cool that even if they hadn’t existed we would have invented them. (Maybe we did, in the form of dragons. And look ahead (or back) to early April for the dinosaur-griffin connection.) Also, as I suggested in a previous post, transitions from one form of locomotion to another – flightless dinosaurs to birdsfish to tetrapodsland mammals to whales – really grab the imagination (and annoy creationists) because the largest and most distinctive named folk categories of animals (snakes, fish, birds) are built around modes of locomotion.

Evolutionary biologists tend to see things differently. Turning fins into legs, legs into wings, and legs back into flippers is pretty impressive. But the really major evolutionary transitions involve the evolution of whole new levels of organization: the origin of the eukaryotic cell, for example, and the origin of multicellular life. From this perspective, the really huge change in the Mesozoic – sometimes called the Age of Dinosaurs – is the origin of eusociality among insects like ants and bees. An ant nest or a bee hive is something like a single superorganism, with most of its members sterile workers striving – even committing suicide — for the colony’s reproduction, not their own. (100 million years ago – corresponding to March 29 in Logarithmic History — is when we find the first bee and ant fossils, but the transition must have been underway before that time.)

Certainly the statistics on social insects today are impressive.

The twenty thousand known species of eusocial insects, mostly ants, bees, wasps and termites, account for only 2 percent of the approximately one million known species of insects. Yet this tiny minority of species dominate the rest of the insects in their numbers, their weight, and their impact on the environment. As humans are to vertebrate animals, the eusocial insects are to the far vaster world of invertebrate animals. … In one Amazon site, two German researchers … found that ants and termites together compose almost two-thirds of the weight of all the insects. Eusocial bees and wasps added another tenth. Ants alone weighed four times more than all the terrestrial vertebrates – that is, mammals, birds, reptiles, and amphibians combined. E. O. Wilson pp 110-113

E. O. Wilson, world’s foremost authority on ants, and one of the founders of sociobiology, thinks that the origin of insect eusociality might have lessons for another major evolutionary transition, the origin of humans (and of human language, technology, culture, and complex social organization). In his book The Social Conquest of Earth he argues that a key step in both sets of transitions was the development of a valuable and defensible home – in the case of humans, a hearth site. Wilson returns to this argument in his book Genesis: The Deep Origin of Human Societies, just published, which I’ll get around to saying more about here eventually. On the same topic, Mark Moffett’s book The Human Swarm: How Human Societies Arise, Thrive, and Fall,  asks how it is that we somehow rival the social insects in our scale of organization.

One trait found in both ants and humans is large-scale warfare. Wilson gives an idea of the nature of ant warfare in fictional form in his novel Anthill. It’s an interesting experiment, but also disorienting. Because individual recognition is not important for ants, his story of the destruction of an ant colony reads like the Iliad with all the personal names taken out. But Homer’s heroes fought for “aphthiton kleos,” undying fame (and got some measure of it in Homer’s poem). The moral economy of reputation puts human cooperation in war and peace on a very different footing from insect eusociality. (Here’s my take on “ethnic group selection,” which depends on social enforcement, perhaps via reputation.)

Consider her ways” is the title of a short story by John Wyndham, about a woman from the present trapped in a future ant-like all-female dystopia. It was made into an episode of Alfred Hitchcock Presents. The title is from Proverbs 6:6, “Go to the ant, thou sluggard, consider her ways and be wise.”

Coals to Newcastle

287 – 272 million years ago

It seems like Gaia really went on a bender in the late Carboniferous, getting drunk on oxygen. By some estimates, the atmosphere was over 30% oxygen back then, compared to 21% today. Living things took advantage of the opportunity. Insects apparently face an upper limit in size because they rely on diffusion through tracheas instead of forced respiration through lungs to get oxygen into their bodies. With more oxygen in the air, this limit was raised. The Carboniferous saw dragonflies with a wingspan up to 70 centimeters, and body lengths up to 30 centimeters, comparable to a seagull.

dragonfly

This happened because plants were turning carbon dioxide into organic matter and free oxygen, and the organic matter was accumulating. With carbon dioxide being removed from the atmosphere, the late Carboniferous and subsequent early Permian saw a reduced greenhouse effect, and global cooling. This was another Ice Age, with ice caps around the southern pole.

A lot of organic carbon ended up being buried. Much of the world’s coal, especially high quality anthracite, has its origin in Carboniferous tropical forests. Western Europe and eastern North America lay in the tropics at the time, and got a particularly generous allotment of coal. Three hundred million years later this bounty would fuel the early Industrial Revolution. (Thanks partly to some of my Welsh ancestors, who helped dig it up back in the day.)

coal age

Bunches of monkeys

Our descent, then, is the origin of our evil passions!! The devil under form of Baboon is our grandfather.

Charles Darwin, Noteboook M

Maimoun angushti shaitan ast.

(A monkey is the devil’s fingers.)

Tajik proverb

Monkeys and apes are not only exceptionally brainy, but also distinctively social. Most mammals are solitary (apart from mothers and their juvenile offspring of course). Among a minority of mammals, adult males and females set up pairbonds. And some mammals form larger groups. In most cases, however, these are relatively unstructured aggregations: a herd of buffalo is more like a crowd of people than a human community. A handful of mammals – elephants, cetaceans, and the majority of monkeys and apes – form more structured groups, enduring and internally differentiated.

Social evolution is path dependent: primate social organization is affected by ecology, but also has a strong phylogenetic component.  This makes it possible to offer a tentative reconstruction of the stepwise evolution of stable sociality in primates. Here’s an evolutionary tree, showing inferred transitions between solitary living, and multimale/multifemale, unimale/multifemale, and pairbonded groups:

monkey society tree

A diagram of the possible evolutionary dynamics looks like this:

monkey society transition

And the accompanying story goes like this: about 52 million years ago, the solitary nocturnal ancestor of monkeys and apes switched to being diurnal. This allowed for the exploitation of a whole range of new foods, but it also exposed the ancestor to new forms of predation. The first step in the evolution of monkey and ape sociality, then, was aggregation in multimale/multifemale groups to cut predation risk. At first these groups would have been loosely structured and unstable, but eventually they would have evolved into something like what we see today among most Old World monkeys: stable (sometimes lifelong) networks of relatives and friends, dominants and subordinates, nested within enduring communities.

A later development, going back to 20 million years ago or less, was a shift, among some of these social primates, to unimale/multifemale groups, or pair-living family groups.

The inferred development of structured social groups in primates bears a remote similarity to the evolution of eusociality among social insects. According to current theories, the starting point for eusociality is the development of a defended nest site where females lay eggs and raise offspring. Sometimes an established nest site is so valuable that it’s adaptive for the next generation of offspring to stay on when they mature rather trying to found new nests. The eventual result may be the evolution of a highly structured society, with strong reproductive skew: some nest members specialize in reproduction, others in foraging or defending the nest. The latter may evolve into an obligately sterile caste.

Primates too have developed an intensified, structured sociality as a response to obligate group living. But the parallels with eusocial insects go only so far. The great majority of primates give birth to one offspring at a time. There are no queen bee baboons whelping one vast litter after another and pushing subaltern kin into caring for them. This goes for humans as well. Our species matches the social insects in the scale of cooperation, but we manage this through a complicated dance of coalition-building and reputation management. For a primate, building a honey-bee style superorganism has to be an aspiration rather than a reality.beehive state

Consider her ways

98.6 – 93.3 million years ago.

Here is my obituary for Ed Wilson, who died last year, and below some thoughts about ants.

There are some pieces of paleontology that really stand out in the popular imagination. Dinosaurs are so cool that even if they hadn’t existed we would have invented them. (Maybe we did, in the form of dragons. And look ahead (or back) to early April for the dinosaur-griffin connection.) Also, as I suggested in a previous post, transitions from one form of locomotion to another – flightless dinosaurs to birdsfish to tetrapodsland mammals to whales – really grab the imagination (and annoy creationists) because the largest and most distinctive named folk categories of animals (snakes, fish, birds) are built around modes of locomotion.

Evolutionary biologists tend to see things differently. Turning fins into legs, legs into wings, and legs back into flippers is pretty impressive. But the really major evolutionary transitions involve the evolution of whole new levels of organization: the origin of the eukaryotic cell, for example, and the origin of multicellular life. From this perspective, the really huge change in the Mesozoic – sometimes called the Age of Dinosaurs – is the origin of eusociality among insects like ants and bees. An ant nest or a bee hive is something like a single superorganism, with most of its members sterile workers striving – even committing suicide — for the colony’s reproduction, not their own. (100 million years ago – corresponding to March 29 in Logarithmic History — is when we find the first bee and ant fossils, but the transition must have been underway before that time.)

Certainly the statistics on social insects today are impressive.

The twenty thousand known species of eusocial insects, mostly ants, bees, wasps and termites, account for only 2 percent of the approximately one million known species of insects. Yet this tiny minority of species dominate the rest of the insects in their numbers, their weight, and their impact on the environment. As humans are to vertebrate animals, the eusocial insects are to the far vaster world of invertebrate animals. … In one Amazon site, two German researchers … found that ants and termites together compose almost two-thirds of the weight of all the insects. Eusocial bees and wasps added another tenth. Ants alone weighed four times more than all the terrestrial vertebrates – that is, mammals, birds, reptiles, and amphibians combined. E. O. Wilson pp 110-113

E. O. Wilson, world’s foremost authority on ants, and one of the founders of sociobiology, thinks that the origin of insect eusociality might have lessons for another major evolutionary transition, the origin of humans (and of human language, technology, culture, and complex social organization). In his book The Social Conquest of Earth he argues that a key step in both sets of transitions was the development of a valuable and defensible home – in the case of humans, a hearth site. Wilson returns to this argument in his book Genesis: The Deep Origin of Human Societies, just published, which I’ll get around to saying more about here eventually. On the same topic, Mark Moffett’s book The Human Swarm: How Human Societies Arise, Thrive, and Fall,  asks how it is that we somehow rival the social insects in our scale of organization.

One trait found in both ants and humans is large-scale warfare. Wilson gives an idea of the nature of ant warfare in fictional form in his novel Anthill. It’s an interesting experiment, but also disorienting. Because individual recognition is not important for ants, his story of the destruction of an ant colony reads like the Iliad with all the personal names taken out. But Homer’s heroes fought for “aphthiton kleos,” undying fame (and got some measure of it in Homer’s poem). The moral economy of reputation puts human cooperation in war and peace on a very different footing from insect eusociality. (Here’s my take on “ethnic group selection,” which depends on social enforcement, perhaps via reputation.)

Consider her ways” is the title of a short story by John Wyndham, about a woman from the present trapped in a future ant-like all-female dystopia. It was made into an episode of Alfred Hitchcock Presents. The title is from Proverbs 6:6, “Go to the ant, thou sluggard, consider her ways and be wise.”

Coals to Newcastle

287 – 272 million years ago

It seems like Gaia really went on a bender in the late Carboniferous, getting drunk on oxygen. By some estimates, the atmosphere was over 30% oxygen back then, compared to 21% today. Living things took advantage of the opportunity. Insects apparently face an upper limit in size because they rely on diffusion through tracheas instead of forced respiration through lungs to get oxygen into their bodies. With more oxygen in the air, this limit was raised. The Carboniferous saw dragonflies with a wingspan up to 70 centimeters, and body lengths up to 30 centimeters, comparable to a seagull.

dragonfly

This happened because plants were turning carbon dioxide into organic matter and free oxygen, and the organic matter was accumulating. With carbon dioxide being removed from the atmosphere, the late Carboniferous and subsequent early Permian saw a reduced greenhouse effect, and global cooling. This was another Ice Age, with ice caps around the southern pole.

A lot of organic carbon ended up being buried. Much of the world’s coal, especially high quality anthracite, has its origin in Carboniferous tropical forests. Western Europe and eastern North America lay in the tropics at the time, and got a particularly generous allotment of coal. Three hundred million years later this bounty would fuel the early Industrial Revolution. (Thanks partly to some of my Welsh ancestors, who helped dig it up back in the day.)

coal age

We are upside-down bugs

475-450 Mya

“We are upside-down bugs” is not as catchy a song lyric as “We are stardust.” But the story may be just as interesting.

The proto-evolutionist anatomist Etienne Geoffroy Saint-Hilaire (1772-1844) proposed long ago that all animals – insects to vertebrates — share a “unity of composition.” He was opposed by his sometime friend and sometime rival, anti-evolutionist anatomist Georges Cuvier (1769-1832), who argued that the animal world is organized in four great “embranchements,” with nothing in common in their body plans. Geoffroy Saint-Hilaire noted that insects have their nervous systems running ventrally (through their bellies) and their digestive systems dorsally (through their backs), the opposite of vertebrates. So he proposed the daring hypothesis that, from head to tail, vertebrates and insects have the same body plan, but belly to back they are flipped around.

Remarkably enough, a modernized version of this hypothesis has been vindicated by developmental genetics. Vertebrates have a series of genes, the Hox genes, that control development. They are laid out in order, with the genes switching on the development of the head followed by genes for the upper body, etc. It turns out that much the same genes in the same order control development in insects (not exactly the same, but clearly related), even though the actual structure of insect bodies is very different. On the other hand, the gene that turns on ventral development in the fruit fly Drosophila is related to the gene that turns on dorsal development in the toad Xenopus, while the gene that turns on dorsal development in Drosophila is related to the gene that controls ventral development in Xenopus.

The hypothesis that seems to account for this is that back in the day –- before the Cambrian explosion – there was a small wormy bilaterally symmetrical organism, ancestor to almost all animals (except sponges and jellyfish and the Ediacaran Petalonamae). Some of the descendants of that primordial animal gave rise to protostomes (where the first opening in the embryo becomes a mouth) including arthropods (spiders, insects, etc.), molluscs (including clams, crustaceans, octopuses), and annelids (earthworms).

But somewhere along the pathway leading to the deuterostomes (where the first opening in the embryo becomes the anus, the second becomes the mouth), including the chordates, the vertebrates, and us, another set of descendants started swimming upside down. And the rest is (pre)history: this initial minor quirk of evolutionary history was well-entrenched by today’s date.

Bunches of monkeys

Our descent, then, is the origin of our evil passions!! The devil under form of Baboon is our grandfather.

Charles Darwin, Noteboook M

Maimoun angushti shaitan ast.

(A monkey is the devil’s fingers.)

Tajik proverb

Monkeys and apes are not only exceptionally brainy, but also distinctively social. Most mammals are solitary (apart from mothers and their juvenile offspring of course). Among a minority of mammals, adult males and females set up pairbonds. And some mammals form larger groups. In most cases, however, these are relatively unstructured aggregations: a herd of buffalo is more like a crowd of people than a human community. A handful of mammals – elephants, cetaceans, and the majority of monkeys and apes – form more structured groups, enduring and internally differentiated.

Social evolution is path dependent: primate social organization is affected by ecology, but also has a strong phylogenetic component.  This makes it possible to offer a tentative reconstruction of the stepwise evolution of stable sociality in primates. Here’s an evolutionary tree, showing inferred transitions between solitary living, and multimale/multifemale, unimale/multifemale, and pairbonded groups:

monkey society tree

A diagram of the possible evolutionary dynamics looks like this:

monkey society transition

And the accompanying story goes like this: about 52 million years ago, the solitary nocturnal ancestor of monkeys and apes switched to being diurnal. This allowed for the exploitation of a whole range of new foods, but it also exposed the ancestor to new forms of predation. The first step in the evolution of monkey and ape sociality, then, was aggregation in multimale/multifemale groups to cut predation risk. At first these groups would have been loosely structured and unstable, but eventually they would have evolved into something like what we see today among most Old World monkeys: stable (sometimes lifelong) networks of relatives and friends, dominants and subordinates, nested within enduring communities.

A later development, going back to 20 million years ago or less, was a shift, among some of these social primates, to unimale/multifemale groups, or pair-living family groups.

The inferred development of structured social groups in primates bears a remote similarity to the evolution of eusociality among social insects. According to current theories, the starting point for eusociality is the development of a defended nest site where females lay eggs and raise offspring. Sometimes an established nest site is so valuable that it’s adaptive for the next generation of offspring to stay on when they mature rather trying to found new nests. The eventual result may be the evolution of a highly structured society, with strong reproductive skew: some nest members specialize in reproduction, others in foraging or defending the nest. The latter may evolve into an obligately sterile caste.

Primates too have developed an intensified, structured sociality as a response to obligate group living. But the parallels with eusocial insects go only so far. The great majority of primates give birth to one offspring at a time. There are no queen bee baboons whelping one vast litter after another and pushing subaltern kin into caring for them. This goes for humans as well. Our species matches the social insects in the scale of cooperation, but we manage this through a complicated dance of coalition-building and reputation management. For a primate, building a honey-bee style superorganism has to be an aspiration rather than a reality.beehive state

Proposed design for Utah state quarter

\

Slime had they for mortar

“And slime had they for mortar” Genesis 11:3

The last post was about a major transition in evolution, the origin of social insect colonies, in which individual ants and bees work together to make up something like a superorganism. Around the same time that this was happening we find evidence for another venture in higher-level evolution, the slime molds. (The evidence is in the form of a recently discovered 100 million year old fossil, although slime molds were probably around long before this.)

John Tyler Bonner, who died in 2019, spent 70 years of a very long life studying cellular slime molds. Here are some weirdly beautiful movies he made. Cellular slime molds switch between being single cell organisms and multicellular organisms. Most of the time they live alone, looking and acting much like non-social amoebae. But when times get tough, and local food resources are exhausted, the cells start sending out chemical signals indicating they are ready to shift to another state. Individual cells aggregate to form a mass, which is capable of moving around, seeking out new food sources, even learning. (In cellular slime molds, cells retain their identity as separate cells. In plasmodial slime molds, the cells merge to form one super cell.) The mass may raise up a fruiting body atop a stem. The spores in the fruiting body may blow away, perhaps being carried some distance to a better home, where the survivors disperse and feast as the cycle begins again. There is an interesting sociobiological puzzle here: the cells forming the stalk are sacrificing themselves for the sake of the spore cells. This is probably an instance of kin selection.

Both social insects and slime molds may carry lessons for human social life, which, on a large scale, is radically different from the social life of our primate near relations. Both social insects and humans commonly build enormous social organizations with high levels of cooperation. These organizations are too large for their members to recognize one another as individuals. Instead they rely on signals to show others that they are the right sort. With social insects, these are mostly chemical signals. With humans these are the various insignia – letters of commission, uniforms, shibboleths, etc. – that mark the bearer as the occupant of a particular social role, independently of his personal character. (“You salute the uniform, not the man.”) For more on this topic, check out Mark Moffett’s The Human Swarm: How Our Societies Arise, Thrive, and Fall.

And, as with slime molds, humans seem to go through characteristic alternations in their social lives, on a time scale of multiple generations. With slime molds there is an alternation between solitary and social phases. With humans there is an alternation between phases of lesser and greater social solidarity (asabiya). Borrowing from Max Weber, we might call this an alternation between routine and charisma. In phases of routine, people learn the rules of their society, and do their best to get ahead by following the rules, or working around them. But in times of crisis, the old ways no longer serve. While slime molds secrete pheromones to instigate aggregation in hard times, humans secrete cosmologies. Prophets arise, with visions of a new order, taking their cues from divine visions, or the Book of Daniel or Revelations, or theories of political economy or race science. The great majority of such projects are stillborn, but occasionally one succeeds, subduing doubters and infidels, overthrowing the established order or leading a chosen people to a new land. The world we live in – the civilizational landscape of Eurasia, the cultural geography of the United States (I write this in Salt Lake City, Utah) – is in some degree the legacy of such projects.

The quotation above from Genesis 11:3 was used by Eric Hoffer in his book The True Believer: Thoughts on the Nature of Mass Movements, published in the early years of the Cold War, still worth reading today.

Related, here’s me on the sociobiology of “ethnic group selection.”

Consider her ways

98.6 – 93.3 million years ago.

There are some pieces of paleontology that really stand out in the popular imagination. Dinosaurs are so cool that even if they hadn’t existed we would have invented them. (Maybe we did, in the form of dragons. And look ahead (or back) to early April for the dinosaur-griffin connection.) Also, as I suggested in a previous post, transitions from one form of locomotion to another – flightless dinosaurs to birdsfish to tetrapodsland mammals to whales – really grab the imagination (and annoy creationists) because the largest and most distinctive named folk categories of animals (snakes, fish, birds) are built around modes of locomotion.

Evolutionary biologists tend to see things differently. Turning fins into legs, legs into wings, and legs back into flippers is pretty impressive. But the really major evolutionary transitions involve the evolution of whole new levels of organization: the origin of the eukaryotic cell, for example, and the origin of multicellular life. From this perspective, the really huge change in the Mesozoic – sometimes called the Age of Dinosaurs – is the origin of eusociality among insects like ants and bees. An ant nest or a bee hive is something like a single superorganism, with most of its members sterile workers striving – even committing suicide — for the colony’s reproduction, not their own. (100 million years ago – corresponding to March 29 in Logarithmic History — is when we find the first bee and ant fossils, but the transition must have been underway before that time.)

Certainly the statistics on social insects today are impressive.

The twenty thousand known species of eusocial insects, mostly ants, bees, wasps and termites, account for only 2 percent of the approximately one million known species of insects. Yet this tiny minority of species dominate the rest of the insects in their numbers, their weight, and their impact on the environment. As humans are to vertebrate animals, the eusocial insects are to the far vaster world of invertebrate animals. … In one Amazon site, two German researchers … found that ants and termites together compose almost two-thirds of the weight of all the insects. Eusocial bees and wasps added another tenth. Ants alone weighed four times more than all the terrestrial vertebrates – that is, mammals, birds, reptiles, and amphibians combined. E. O. Wilson pp 110-113

E. O. Wilson, world’s foremost authority on ants, and one of the founders of sociobiology, thinks that the origin of insect eusociality might have lessons for another major evolutionary transition, the origin of humans (and of human language, technology, culture, and complex social organization). In his book The Social Conquest of Earth he argues that a key step in both sets of transitions was the development of a valuable and defensible home – in the case of humans, a hearth site. Wilson returns to this argument in his book Genesis: The Deep Origin of Human Societies, just published, which I’ll get around to saying more about here eventually. On the same topic, Mark Moffett’s book The Human Swarm: How Human Societies Arise, Thrive, and Fall,  asks how it is that we somehow rival the social insects in our scale of organization.

One trait found in both ants and humans is large-scale warfare. Wilson gives an idea of the nature of ant warfare in fictional form in his novel Anthill. It’s an interesting experiment, but also disorienting. Because individual recognition is not important for ants, his story of the destruction of an ant colony reads like the Iliad with all the personal names taken out. But Homer’s heroes fought for “aphthiton kleos,” undying fame (and got some measure of it in Homer’s poem). The moral economy of reputation puts human cooperation in war and peace on a very different footing from insect eusociality. (Here’s my take on “ethnic group selection,” which depends on social enforcement, perhaps via reputation.)

Consider her ways” is the title of a short story by John Wyndham, about a woman from the present trapped in a future ant-like all-female dystopia. It was made into an episode of Alfred Hitchcock Presents. The title is from Proverbs 6:6, “Go to the ant, thou sluggard, consider her ways and be wise.”