Monthly Archives: April 2017

Land of the throats

17.3-16.3 million years ago

There’s a great expansion in the diversity of horses in the mid-Miocene, especially horses that are adapted to grazing rather than browsing. The shift to grazing is going on world wide among many different groups. In South America the big grazers are the liptoterns, ungulates not closely related to horses that evolve to look a lot like them, with high-crowned grazing teeth, single-toed hoofed feet and legs built for speed. (Edgar Rice Burroughs took the name thoat – what his characters rode around on on Barsoom/Mars — from one genus of liptotern, Thoatherium.)


We often think of evolution as a matter of organisms adapting to their environments, but when the environment is other organisms, each side may be chasing a moving target. Or sometimes the sides may reach an equilibrium. In the case of grazing animals, there’s a process of coevolution that goes on between grazers and grasses. Where grazers are active, the plants that survive are grasses, which keep leaves above the ground but grow from underground. And this works in the other direction: in moderately dry climates, grasses are more productive than taller brushy plants, so it’s when grasses take over that there’s enough food around for grazers – a mutually reinforcing cycle. With drier climates from the mid-Miocene on, grasslands and grazers get to be more and more important.

So a lot of the story of life on Earth is not just the appearance of this or that cool animal, but also the evolution of ecosystems. At the same time grasslands were spreading on land, for example, kelp forests were spreading in coastal oceans. We’ll see how important grasslands are in human evolution and history. And kelp forests, with their rich fish populations, might have been important too, as the highway that the earliest Americans followed along the Pacific coast to the New World.


Planet of the horses

18.3-17.3 million years ago.

We’re now running through Big History 100,000 years a day.

Horses have probably been the single most important domesticated animal in human history. Also, more than with other livestock, people get attached to horses as individuals. I’m guessing that in history and literature there are more horses with individual names than any other animal. (Alexander the Great’s horse was Bucephalus, “Ox-head”; Charlemagne’s was Tencendur; Don Quixote’s was Rocinante; Gandalf’s was Shadowfax.) We’ll be hearing a lot more about horses and horse folk on Logarithmic History once we get to human history.

Being so charismatic, horses have featured in a big way in arguments over evolution. Thomas Henry Huxley (1825-1895), “Darwin’s bulldog,” knew he needed to find good evidence for evolution. When he visited the United States in 1876, he was ready to give a lecture based on horse fossils from Europe. But visiting Yale, he was so impressed with O. C. Marsh’s collection of horse fossils from the western United States, that he rewrote his lecture around it.

Henry Fairfield Osborn (1857-1935) was director of the American Museum of Natural History and a huge presence in American paleontology. He was active at a time when most scientists accepted evolution, but many weren’t so keen on Darwin’s theory of natural selection. He thought horses were a fine example of “orthogenesis,” the tendency of species to follow a fixed line of evolution, reflecting internal forces, maybe related to willpower. He thought that humans shared a migratory spirit with horses, so that anywhere horse fossils were found would be a good place to look for human fossils. This theory didn’t pan out too well. A massive AMNH expedition to Central Asia led by Ray Chapman Andrews found all sorts of wonders – dinosaur eggs, baluchitheres – but no fossil “pro-men.” Orthogenesis leant itself naturally to diagrams showing evolution from early to modern horses going in a straight line.


George Gaylord Simpson (1902-1984), paleontologist, was one of the great figures in the evolutionary Modern Synthesis that brought together Darwin’s theory of natural selection and Mendel’s genetics. There was no room for orthogenesis in the Modern Synthesis, and Simpson emphasized that the evolution of horses was a matter of adaptation to a changing environment – especially the spread of grasslands. Also that horse evolution looked more like a bush than a ladder.


Stephen Jay Gould (1941-2002) was the most widely recognized American evolutionary biologist of recent times. (For example had a spot on The Simpson’s — “Lisa The Skeptic,” Season 9.) Gould had his own take on the modern synthesis, taking the “bushes not ladders” theme for horses and other animals (including human ancestors), and pushing it a step further. According to the theory of “punctuated equilibrium” (formulated in collaboration with Niles Eldredge), species mostly change relatively little during the time they exist (evolutionary stasis). Most evolutionary change happens when a small population buds off to form a new species and reproductive isolation allows it to conserve any evolutionary novelties it has developed. This opens up the possibility of “species selection.” Applied to horses, for example, this could mean that horses were evolutionarily successful for some time not so much because individual horses were well-adapted, but because something about horses collectively (their harem mating system, maybe) made one horse species especially likely to produce new species. Both horses and primates seem to be especially prone to bud off new species:

Speciation and chromosomal evolution seem fastest in those genera with species organized into clans or harems (e.g., some primates and horses) or with limited adult vagility and juvenile dispersal, patchy distribution, and strong individual territoriality (e.g., some rodents). This is consistent with the … hypothesis … that population subdivision into small demes promotes both rapid speciation and evolutionary changes in gene arrangement by inbreeding and drift.

Planet of the apes

The Miocene (23 – 5 million years ago) is a period of extraordinary success for our closest relatives, the apes. Overall there may have been as many as a hundred ape species during the epoch. Proconsul (actually several species) is one of the earliest. We will meet just a few of the others over the course of the Miocene, as some leave Africa for Asia, and some (we think) migrate back.

Sometimes evolution is a story of progress – not necessarily moral progress, but at least progress in the sense of more effective animals replacing less effective. For example, monkeys and apes largely replace other primates (prosimians, relatives of lemurs and lorises) over most of the world after the Eocene, with lemurs flourishing only on isolated Madagascar. This replacement is probably a story of more effective forms outcompeting less effective. And the expansion of brain size that we see among many mammalian lineages throughout the Cenozoic is probably another example of progress resulting from evolutionary arms races.

But measured by the yardstick of evolutionary success, (non-human) apes — some of the brainiest animals on the planet — will turn out not to be all that effective after the Miocene. In our day, we’re down to just about four species of great ape (chimpanzees, bonobos, gorillas, and orangutans), none of them very successful. Monkeys, with smaller body sizes and more rapid reproductive rates, are doing better. For that matter, the closest living relatives of primates (apart from colugos and tree shrews) are rodents, who are doing better still, mostly by reproducing faster than predators can eat them.

So big brains aren’t quite the ticket to evolutionary success that, say, flight has been for birds. One issue for apes may be that with primate rules for brain growth – double the brain size means double the neurons means double the energy cost – a large-bodied, large brained primate (i.e. an ape) is going to face a serious challenge finding enough food to keep its brain running. It’s not until a later evolutionary period that one lineage of apes really overcomes this problem, with a combination of better physical technology (stone tools, fire) and better social technology (enlisting others to provision mothers and their dependent offspring).

Gould’s Belt

30.3-28.7 million years ago

Logarithmic History has had a lot of geology and biology lately, not so much astronomy. But all is not peaceful in the heavens.

Benjamin Gould is a nineteenth century astronomer who noted that a lot of bright stars in the sky — especially the bright blue stars that we know are very young — seem to fall along a ring tilted at a 20 degree angle to the Milky Way. This ring has come to be called Gould’s Belt. The Belt is an ellipse about 2400 by 1500 light years across where there has been a recent wave of star formation. Our Sun lies within the belt, somewhat off center; the center lies in the direction of the Pleiades.

The Belt began forming maybe thirty million years ago. We’re not sure what happened. A supernova may have set off star formation, but it would have to have been a huge one. Or it may be that a gas cloud or a clump of dark matter passed at an angle through our part of the Milky Way, and started stars forming with its shock wave. There are features resembling Gould’s Belt in other galaxies. In any case, the Belt is one of the really striking features of our part of the Milky Way.

Whatever its cause, no one disputes its magnificence. Gould’s belt is the most prominent starry feature in the Sun’s neighborhood, contributing most of the bright young stars nearby. Nearly two thirds of the massive stars within 2,000 light-years of the Sun belong to Gould’s belt. If I were kidnapped by an alien spaceship and taken to some remote corner of the Galaxy, Gould’s belt is what I’d look for to find my way back home.

Ken Crosswell. Gould’s Belt.

If you’re in the Northern hemisphere you can look at the sky tonight and see the Milky Way in an arc in the Western sky, stretching from North to South. West of the Milky Way you’ll see some of Gould’s belt, an arc of bright stars running north to south from the Pleiades, through Taurus and the bright stars of Orion, and Canis Major. So tonight look at the stars, and drink a toast if you want to your ape ancestors who were just on the cusp of splitting off from monkeys thirty million years ago.

Dead baby monkeys

There’s a dark side to being a primate. Last year a review article summarized data on rates of lethal aggression in non-human animals. The figure below shows some of the results. Several clusters of especially violent species stand out in the figure, including primates.

dead monkeys

Much of the lethal aggression in primates involves infanticide. Sarah Hrdy demonstrated back in the 1970s that infanticide occurs regularly in Hanuman langurs, monkeys in India. A male who takes over a group of females will systematically kill offspring sired by the previous male. If you think evolution is about the survival of the species, this is hard to explain. But it makes sense given the logic of the selfish gene. Females who lose an infant return more quickly to breeding again, and the father of the next infant is likely to be the killer of the previous one.

Primates may be particularly vulnerable to this grim logic, because they spend a long time as infants. Commonly L/G>1, that is to say, the time, L, a female spends lactating for an infant (during which she is unlikely to conceive), is usually greater than the time, G, she spends gestating an infant. This puts particular pressure on males to hurry things along by eliminating nursing infants fathered by other males.

As a result, infanticide is relatively common among primates, and females under particularly strong pressure to find ways to avoid it. Hanuman langurs live in one-male units, where a female has little choice about who she mates with. In other species, by contrast (most baboons, chimpanzees), multiple males reside with multiple females. In these species females are often sexually promiscuous, sometimes actively soliciting multiple males for sex. This is probably mostly a matter of confusing paternity sufficiently to suppress the threat of infanticide. There’s a general lesson here: female promiscuity generally has different evolutionary roots than male promiscuity.

Ground-up monkey brains

One reason for being interested in monkeys is that they’re brainy mammals. Here’s the conventional graph illustrating that:

brain size

Larger mammals tend to have larger brains, but the relationship is non-linear. Multiplying body mass by x doesn’t multiply brain mass by x. Instead it multiplies brain mass by x.75. In other words, Brain Mass is proportional to (Body Mass).75. Equivalently (taking the logarithm of both sides) Log[Brain Mass] is equal to .75 times Log[Body Mass], plus a constant. So Log[Brain Mass] plotted against Log[Body Mass] gives a straight line with a slope of .75. That means that if one mammal has 16 times the body mass of another, it’s expected to have 8 times the brain mass. 10,000 times the body mass means 1000 times the brain mass. The thing to note is that primates defy expectations. They have larger brains than would be expected based on their body sizes.

But we’ve recently learned that primates – especially big ones – are even more special than this graph suggests. Susan Herculano-Houzel has pioneered a technique that involves chopping up brains (or parts of brains), dissolving their cells to make a kind of brain soup, and counting cell nuclei. This allows her to estimate how many neurons there are in different brains.

monkey brain soup

Major findings: Among most mammals, the number of neurons increases more slowly than brain size. Increase brain size by x, and you increase number of neurons by about x.67. (H-H shows this flipped around. Increase number of neurons by x and you increase brain mass by x1.5.) But primates are exceptional; the relationship is nearly linear. An x-fold increase in primate brain size corresponds to about an x-fold increase in number of neurons. Humans follow the primate rule here. We have about the same density of neurons as other primates. When you combine the exceptionally large brain sizes of humans with a standard high primate neuron density, you get an animal with an enormous number of neurons. By contrast, a rodent with a human sized brain, if it followed rodent rules for how neuron numbers increase with brain size, would have only 1/7 as many neurons.

Neurons are expensive. Most large animals economize by cutting back on neuron density. A cubic centimeter of cow brain has fewer neurons, and consumes energy at a lower rate, than a cubic centimeter of mouse brain. By contrast, large primates are extravagant, devoting exceptionally large energy budgets to running their brains. And human brains are exceptionally costly. An important question for the study of human evolution is how we paid the bill for such costly brains. That’s a story for later. But another part of the story starts back in the early Cenozoic, when monkeys committed to a different set of rules for building brains.

The monkey’s voyage

The Oligocene sees a major diversification of anthropoid primates (monkeys, apes, and humans). Among the anthropoids, the major evolutionary split is a geographic one, between platyrrhines (New World monkeys) and catarrhines (Old World monkeys, apes, and humans). Aegyptopithecus is one of the earliest primates that clearly falls on the catarrhine side of that split (although the split must go back earlier).

At Logarithmic History we traffic in Big Questions, and one of the biggest questions of all is the balance of natural law and accident in making our world. Thus physicists have long hoped to find that the laws governing our universe reduce to just a few fundamental equations, but we saw at the beginning of this blog that they are now confronting the possibility that our universe is just one among many, and that the laws of physics in our universe may incorporate a large dose of historical accident. With the discovery of extra-solar planets, we’re just beginning to get an idea of how typical or atypical our solar system is. And we’ll have a lot of opportunities to ask whether there are Laws of History (an old idea now undergoing a revival in the new field of cliodynamics*) when we move into the historical period later in the year.

The field of biogeography – the study of the geographic distribution of species – has seen some major pendulum swings in this regard. Darwin was intensely interested in questions of biogeography mainly because they could provide support for the theory of evolution. His approach could fairly be called eclectic. From sometime in the second half of the twentieth century however, a lot of biologists thought they could do better than just answering particularistic questions about how species A got to island Z. They wanted to find scientific laws.

Edward O. Wilson was an early pioneer in this area. Along with Robert MacArthur, he developed a theory of island biogeography according to which the number of species on an island is set by a predictable equilibrium between extinction (smaller islands have higher extinction rates) and colonization (remote islands have lower colonization rates). Being a good scientist he actually put this theory to the test by getting an exterminator to “defaunate” (it means what you think it means) some little mangrove islets, and showing that they returned to very close to their predicted equilibrium numbers of animal species after a while.

For the biogeography of continents (and larger islands once part of continents) the quest for scientific laws took a different turn. The discovery of continental drift and plate tectonics encouraged a school of “vicariance biogeography.” Vicariance biogeographers liked to trace current biogeographic distributions to the wanderings of continents. They were highly allergic to explanations involving accidental long-distance dispersal over big stretches of ocean.

Alan de Queiroz, in The Monkey’s Voyage: How Improbable Journeys Shaped the History of Life, provides a highly readable overview of the decline (if not quite the extinction) of the vicariance school in the face of mounting evidence for flukish dispersals as a major factor in biogeography. The dispersal of monkeys to the New World is a dramatic case in point. (Guinea pigs and their relatives are another.) About the only scenario that makes sense involves a raft of trees washing out to sea (most likely from the Congo basin) and eventually delivering a few parched, scared monkeys to the island continent of South America, where they eventually spawned the whole range of species – spider monkeys, squirrel monkeys, howler monkeys, tamarins, marmosets, capuchins – we know today. Sheer accident: change the weather a little, leave the monkeys stranded at sea a little longer, and the whole history of primates in the New World is erased.

* so new my spellchecker doesn’t recognize it.