(Note that the numbers below are for 2018. They were slightly different for 2016, a leap year.)

With Logarithmic History, each day of the year covers a 5.46% shorter period in the history of the universe than the preceding day (actually 5.460721706052876347% shorter, to be precise).

Here’s the math involved: Let time flow at the rate of one history-of-the-universe year per calendar day on December 31. (We could instead make it one history-of-the-universe day per calendar day on the last day, but this would make time pass awfully slooowly in December. Who wants to spend the last week of December commemorating the last two weeks in December?)  Let December 30 cover x years, December 29 cover xyears, and so on, all the way back to January 1, which covers x364 years. Then

1+x+x2+ …+x364 years = 13.8*109 years

Solving for x gives



1-1/x = 0.05460721706052876347

or 5.460721706052876347

Since x41=9.998, each calendar day covers a period of time about one tenth as long as a date 41 days earlier.

3 thoughts on “Math

  1. Pingback: Plagues and peoples | Logarithmic History

  2. Pingback: Elon Musk Is the Madman We Need | Social Lead Press

  3. Pingback: Elon Musk Is the Madman We Need | Tera News

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s