Author Archives: logarithmichistory

Gould’s Belt

30.3-28.7 million years ago

Logarithmic History has had a lot of geology and biology lately, not so much astronomy. But all is not peaceful in the heavens.

Benjamin Gould is a nineteenth century astronomer who noted that a lot of bright stars in the sky — especially the bright blue stars that we know are very young — seem to fall along a ring tilted at a 20 degree angle to the Milky Way. This ring has come to be called Gould’s Belt. The Belt is an ellipse about 2400 by 1500 light years across where there has been a recent wave of star formation. Our Sun lies within the belt, somewhat off center; the center lies in the direction of the Pleiades.

The Belt began forming maybe thirty million years ago. We’re not sure what happened. A supernova may have set off star formation, but it would have to have been a huge one. Or it may be that a gas cloud or a clump of dark matter passed at an angle through our part of the Milky Way, and started stars forming with its shock wave. There are features resembling Gould’s Belt in other galaxies. In any case, the Belt is one of the really striking features of our part of the Milky Way.

Whatever its cause, no one disputes its magnificence. Gould’s belt is the most prominent starry feature in the Sun’s neighborhood, contributing most of the bright young stars nearby. Nearly two thirds of the massive stars within 2,000 light-years of the Sun belong to Gould’s belt. If I were kidnapped by an alien spaceship and taken to some remote corner of the Galaxy, Gould’s belt is what I’d look for to find my way back home.

Ken Crosswell. Gould’s Belt.

If you’re in the Northern hemisphere you can look at the sky tonight and see the Milky Way in an arc in the Western sky, stretching from North to South. West of the Milky Way you’ll see some of Gould’s belt, an arc of bright stars running north to south from the Pleiades, through Taurus and the bright stars of Orion, and Canis Major. So tonight look at the stars, and drink a toast if you want to your ape ancestors who were just on the cusp of splitting off from monkeys thirty million years ago.

Dead baby monkeys

There’s a dark side to being a primate. Last year a review article summarized data on rates of lethal aggression in non-human animals. The figure below shows some of the results. Several clusters of especially violent species stand out in the figure, including primates.

dead monkeys

Much of the lethal aggression in primates involves infanticide. Sarah Hrdy demonstrated back in the 1970s that infanticide occurs regularly in Hanuman langurs, monkeys in India. A male who takes over a group of females will systematically kill offspring sired by the previous male. If you think evolution is about the survival of the species, this is hard to explain. But it makes sense given the logic of the selfish gene. Females who lose an infant return more quickly to breeding again, and the father of the next infant is likely to be the killer of the previous one.

Primates may be particularly vulnerable to this grim logic, because they spend a long time as infants. Commonly L/G>1, that is to say, the time, L, a female spends lactating for an infant (during which she is unlikely to conceive), is usually greater than the time, G, she spends gestating an infant. This puts particular pressure on males to hurry things along by eliminating nursing infants fathered by other males.

As a result, infanticide is relatively common among primates, and females under particularly strong pressure to find ways to avoid it. Hanuman langurs live in one-male units, where a female has little choice about who she mates with. In other species, by contrast (most baboons, chimpanzees), multiple males reside with multiple females. In these species females are often sexually promiscuous, sometimes actively soliciting multiple males for sex. This is probably mostly a matter of confusing paternity sufficiently to suppress the threat of infanticide. There’s a general lesson here: female promiscuity generally has different evolutionary roots than male promiscuity.

Ground-up monkey brains

One reason for being interested in monkeys is that they’re brainy mammals. Here’s the conventional graph illustrating that:

brain size

Larger mammals tend to have larger brains, but the relationship is non-linear. Multiplying body mass by x doesn’t multiply brain mass by x. Instead it multiplies brain mass by x.75. In other words, Brain Mass is proportional to (Body Mass).75. Equivalently (taking the logarithm of both sides) Log[Brain Mass] is equal to .75 times Log[Body Mass], plus a constant. So Log[Brain Mass] plotted against Log[Body Mass] gives a straight line with a slope of .75. That means that if one mammal has 16 times the body mass of another, it’s expected to have 8 times the brain mass. 10,000 times the body mass means 1000 times the brain mass. The thing to note is that primates defy expectations. They have larger brains than would be expected based on their body sizes.

But we’ve recently learned that primates – especially big ones – are even more special than this graph suggests. Susan Herculano-Houzel has pioneered a technique that involves chopping up brains (or parts of brains), dissolving their cells to make a kind of brain soup, and counting cell nuclei. This allows her to estimate how many neurons there are in different brains.

monkey brain soup

Major findings: Among most mammals, the number of neurons increases more slowly than brain size. Increase brain size by x, and you increase number of neurons by about x.67. (H-H shows this flipped around. Increase number of neurons by x and you increase brain mass by x1.5.) But primates are exceptional; the relationship is nearly linear. An x-fold increase in primate brain size corresponds to about an x-fold increase in number of neurons. Humans follow the primate rule here. We have about the same density of neurons as other primates. When you combine the exceptionally large brain sizes of humans with a standard high primate neuron density, you get an animal with an enormous number of neurons. By contrast, a rodent with a human sized brain, if it followed rodent rules for how neuron numbers increase with brain size, would have only 1/7 as many neurons.

Neurons are expensive. Most large animals economize by cutting back on neuron density. A cubic centimeter of cow brain has fewer neurons, and consumes energy at a lower rate, than a cubic centimeter of mouse brain. By contrast, large primates are extravagant, devoting exceptionally large energy budgets to running their brains. And human brains are exceptionally costly. An important question for the study of human evolution is how we paid the bill for such costly brains. That’s a story for later. But another part of the story starts back in the early Cenozoic, when monkeys committed to a different set of rules for building brains.

The monkey’s voyage

The Oligocene sees a major diversification of anthropoid primates (monkeys, apes, and humans). Among the anthropoids, the major evolutionary split is a geographic one, between platyrrhines (New World monkeys) and catarrhines (Old World monkeys, apes, and humans). Aegyptopithecus is one of the earliest primates that clearly falls on the catarrhine side of that split (although the split must go back earlier).

At Logarithmic History we traffic in Big Questions, and one of the biggest questions of all is the balance of natural law and accident in making our world. Thus physicists have long hoped to find that the laws governing our universe reduce to just a few fundamental equations, but we saw at the beginning of this blog that they are now confronting the possibility that our universe is just one among many, and that the laws of physics in our universe may incorporate a large dose of historical accident. With the discovery of extra-solar planets, we’re just beginning to get an idea of how typical or atypical our solar system is. And we’ll have a lot of opportunities to ask whether there are Laws of History (an old idea now undergoing a revival in the new field of cliodynamics*) when we move into the historical period later in the year.

The field of biogeography – the study of the geographic distribution of species – has seen some major pendulum swings in this regard. Darwin was intensely interested in questions of biogeography mainly because they could provide support for the theory of evolution. His approach could fairly be called eclectic. From sometime in the second half of the twentieth century however, a lot of biologists thought they could do better than just answering particularistic questions about how species A got to island Z. They wanted to find scientific laws.

Edward O. Wilson was an early pioneer in this area. Along with Robert MacArthur, he developed a theory of island biogeography according to which the number of species on an island is set by a predictable equilibrium between extinction (smaller islands have higher extinction rates) and colonization (remote islands have lower colonization rates). Being a good scientist he actually put this theory to the test by getting an exterminator to “defaunate” (it means what you think it means) some little mangrove islets, and showing that they returned to very close to their predicted equilibrium numbers of animal species after a while.

For the biogeography of continents (and larger islands once part of continents) the quest for scientific laws took a different turn. The discovery of continental drift and plate tectonics encouraged a school of “vicariance biogeography.” Vicariance biogeographers liked to trace current biogeographic distributions to the wanderings of continents. They were highly allergic to explanations involving accidental long-distance dispersal over big stretches of ocean.

Alan de Queiroz, in The Monkey’s Voyage: How Improbable Journeys Shaped the History of Life, provides a highly readable overview of the decline (if not quite the extinction) of the vicariance school in the face of mounting evidence for flukish dispersals as a major factor in biogeography. The dispersal of monkeys to the New World is a dramatic case in point. (Guinea pigs and their relatives are another.) About the only scenario that makes sense involves a raft of trees washing out to sea (most likely from the Congo basin) and eventually delivering a few parched, scared monkeys to the island continent of South America, where they eventually spawned the whole range of species – spider monkeys, squirrel monkeys, howler monkeys, tamarins, marmosets, capuchins – we know today. Sheer accident: change the weather a little, leave the monkeys stranded at sea a little longer, and the whole history of primates in the New World is erased.

* so new my spellchecker doesn’t recognize it.

Ginormous, or The Canseco Conjecture

35.9-33.9 million years ago

The Eocene epoch, which we leave behind, saw super-greenhouse conditions, and tropical forests extending to high latitudes. The Oligocene, starting 34 million years ago, sees a drop in atmospheric COlevels. Glaciers begin forming in Antarctica, and the world cools sharply. There are extinctions in a number of groups (although not on the scale of the Big Five mass extinctions), after which the fauna, at least in Eurasia/North America, starts looking like what we’re used to: versions of horses, deer, camels, elephants, cats, dogs, and many rodent families begin to dominate.

The Oligocene also boasts also the largest land mammal of all time, Indricotherium (or Baluchitherium, discovered 1922), related to living rhinoceroses, but 15 feet high at the shoulders, and weighing as much as three or four African elephants. (The picture below compares them.) Indricotherium was big enough to browse high up on trees. By contrast, living big browsers (giraffes, elephants) use special bits of anatomy (long necks, trunks) to reach that high, and don’t get quite as big.indricotherium

This is still a lot smaller than the biggest dinosaurs, the sauropods. Ginormousness is one of the things dinosaurs are famous for, even though there were plenty of small dinosaurs too. Two things that keep mammals from getting truly huge are probably (1) a different respiratory system, without the extensive airsacs and aerated bones of dinosaurs, and (2) live birth. Gigantic sauropods could lay eggs and produce (relatively) small offspring which grew up quickly, so they didn’t pay as high a reproductive penalty for being big.

There are other possibilities. Jose Canseco, former Major League Baseball player, and authority on being large (he is the author of Juiced: Wild Times, Rampant ‘Roids, Smash Hits, and How Baseball Got Big), published his theory on Twitter in 2013 (February 17-18). “My theory is the core of the planet shifted when [a] single continent formed to keep us in a balanced spin. The land was farther away from the core and had much less gravity so bigness could develop and dominate.” Anticipating possible criticism, he tweeted, “I may not be 100% right but think about it. How else could 30 foot leather birds fly?”

A bear there was, a bear, a bear

50.2-47.5 Million years ago

The end-Cretaceous mass extinction knocked off not only the dinosaurs (except for birds), but also air-breathing marine predators like mososaurs and plesiosaurs. Birds and mammals started moving into the empty niche: penguins from early on, and eventually whales.

(Cartoon by Sam Gross. Not scientifically accurate.)

People around the world seem to be naturally inclined to distinguish major animal life forms according to whether they walk, fly, swim, slither, or creep, so evolutionary shifts in modes of travel – the origin of flight, the return to the sea – really catch people’s imagination – and provoke Creationists. The whale story is particularly dramatic. When Darwin was tried to account for the evolution of whales from a land-dwelling ancestor, he cited accounts of bears swimming and feeding in water, and wrote “I can see no difficulty in a race of bears being rendered, by natural selection, more and more aquatic in their structure and habits, with larger and larger mouths, till a creature was produced as monstrous as a whale.” This statement attracted so much ridicule that Darwin took it out of later editions of The Origin of Species. But he turns out to have been very much on target. We now have a great sequence of whale ancestors. The sequence runs from today’s Pakicetus — a wolf size meat-and-fish eater that splashed along the shores of the ancient Tethys sea separating Africa from Eurasia — to the “walking whale,” Ambulocetus, and on to true whales. Darwin was sort of on the right track thinking of bears, but anatomy and genetics put the ancestors of whales firmly among artiodactyls – hooved animals including hippos, pigs, and cows.

Strange relations and island continents

56.2-53.2 Mya

We’re now in the Cenozoic era – our era. The transition from Paleocene to Eocene epochs in the early Cenozoic (55.9 million years ago) saw a spike in CO2 levels and a sharp rise in temperatures that lasted for several hundred thousand years – perhaps an analog for even more rapid human-caused global warming in our own time. (A recent review is here.)

We’ve seen a great many catastrophes in the history of life, and been reminded of the role of sheer chance in evolution. But the Cenozoic also sees a dramatic adaptive radiation and the steady progress of arms races among survivors of the great dinosaur die-off. Four large scale groupings of placental mammals have already appeared: Afrotheres (aardvarks, hyraxes, elephants, and sea cows), Xenarthrans (anteaters, armadillos, and sloths), Laurasiatheres (shrews, hedgehogs, pangolins, bats, whales, hoofed animals, and carnivores), and Supraprimates (aka Euarchontoglires, including rodents, tree shrews, and primates). This grouping of mammals is anything but obvious – it’s only with DNA sequencing that it has emerged. What’s noticeable is the association with different continents: Afrotheres with Africa, Xenarthrans with South America, and the others with the monster content of Laurasia (Eurasia and North America). Looking beyond placental mammals we see other continental associations: marsupials flourish in South America and Australia, and giant flightless “terror birds” carry on rather like predatory dinosaurs in South America.

There is a pattern here. Evolutionary arms races are most intense in the supercontinent of Laurasia (eventually joined by India and Africa). The island continents of South America and Australia stand apart, and they fare poorly when they start exchanging fauna with the rest of the world. We’ll see a similar pattern – large areas stimulate more competition, and more intense evolution, isolated areas are at a disadvantage – when we start looking at human history. (This is a major theme of Diamond’s deservedly popular Guns, Germs, and Steel.)