Tag Archives: evolution

Planet of the horses

18.29-17.29 million years ago.

We’re now running through Big History at the rate of 1 million years per day.

Horses have probably been the single most important domesticated animal in human history. Also, more than with other livestock, people get attached to horses as individuals. I’m guessing that in history and literature there are more horses with individual names than any other animal. (Alexander the Great’s horse was Bucephalus, “Ox-head”; Muhammed’s was al-Buraq*; Charlemagne’s was Tencendur; Don Quixote’s was Rocinante; Gandalf’s was Shadowfax.) We’ll be hearing a lot more about horses and horse folk on Logarithmic History once we get to human history.

Being so charismatic, horses have featured in a big way in arguments over evolution. Thomas Henry Huxley (1825-1895), “Darwin’s bulldog,” knew he needed to find good evidence for evolution. When he visited the United States in 1876, he was ready to give a lecture based on horse fossils from Europe. But visiting Yale, he was so impressed with O. C. Marsh’s collection of horse fossils from the western United States, that he rewrote his lecture around it.

Henry Fairfield Osborn (1857-1935) was director of the American Museum of Natural History and a huge presence in American paleontology. He was active at a time when most scientists accepted evolution, but many weren’t so keen on Darwin’s theory of natural selection. He thought horses were a fine example of “orthogenesis,” the tendency of species to follow a fixed line of evolution, reflecting internal forces, maybe related to willpower. He thought that humans shared a migratory spirit with horses, so that anywhere horse fossils were found would be a good place to look for human fossils. This theory didn’t pan out too well. A massive AMNH expedition to Central Asia led by Ray Chapman Andrews found all sorts of wonders – dinosaur eggs, baluchitheres – but no fossil “pro-men.” Orthogenesis leant itself naturally to diagrams showing evolution from early to modern horses going in a straight line.

horseladder

George Gaylord Simpson (1902-1984), paleontologist, was one of the great figures in the evolutionary Modern Synthesis that brought together Darwin’s theory of natural selection and Mendel’s genetics. There was no room for orthogenesis in the Modern Synthesis, and Simpson emphasized that the evolution of horses was a matter of adaptation to a changing environment – especially the spread of grasslands. Also that horse evolution looked more like a bush than a ladder.

horsebush

Stephen Jay Gould (1941-2002) was the most widely recognized American evolutionary biologist of recent times. (For example had a spot on The Simpson’s — “Lisa The Skeptic,” Season 9.) Gould had his own take on the modern synthesis, taking the “bushes not ladders” theme for horses and other animals (including human ancestors), and pushing it a step further. According to the theory of “punctuated equilibrium” (formulated in collaboration with Niles Eldredge), species mostly change relatively little during the time they exist (evolutionary stasis). Most evolutionary change happens when a small population buds off to form a new species and reproductive isolation allows it to conserve any evolutionary novelties it has developed. This opens up the possibility of “species selection.” Applied to horses, for example, this could mean that horses were evolutionarily successful for some time not so much because individual horses were well-adapted, but because something about horses collectively (their harem mating system, maybe) made one horse species especially likely to produce new species. Both horses and primates seem to be especially prone to bud off new species:

Speciation and chromosomal evolution seem fastest in those genera with species organized into clans or harems (e.g., some primates and horses) or with limited adult vagility and juvenile dispersal, patchy distribution, and strong individual territoriality (e.g., some rodents). This is consistent with the … hypothesis … that population subdivision into small demes promotes both rapid speciation and evolutionary changes in gene arrangement by inbreeding and drift.

 * Richard Dawkins doesn’t believe that Muhammed’s horse, al-Buraq, carried him (i.e. Muhammed) to heaven and back.
Advertisements

Archaeopteryx, Bird, Fish, Snake

154-147 million years ago

The first Archaeopteryx discovered, found in 1861, is the most famous fossil ever (barring maybe some close human relations). It came at the right time, providing dramatic evidence for the theory of evolution.

archaeopteryx

There may be psychological reasons why Archaeopteryx had the impact it did. Here’s my argument anyway:

According to Jorge Luis Borges, the following is a classification of animals found in a Chinese Encyclopedia, the Celestial Emporium of Benevolent Knowledge.

  • Those that belong to the Emperor
  • Embalmed ones
  • Those that are trained
  • Suckling pigs
  • Mermaids (or Sirens)
  • Fabulous ones
  • Stray dogs
  • Those that are included in this classification
  • Those that tremble as if they were mad
  • Innumerable ones
  • Those drawn with a very fine camel hair brush
  • Et cetera
  • Those that have just broken a flower vase
  • Those that, at a distance, resemble flies

Although some scholars have taken this list seriously (Hi, Michel Foucault!), there’s no evidence that this is anything but a Borgesian joke. Anthropologists have actually spent a lot of time investigating the principles underlying native categorizations of living things, and found they are not nearly as off-the-wall as Borges’ list. These categorizations obey some general principles, not quite the same as modern biologists follow, but not irrational either. (Naming Nature: The Clash Between Instinct and Science is good popular review of ethno-biology, the branch of anthropology that studies different cultures’ theories of biology and systems of classification Did you know there are specialized brain areas that handle animal taxonomy? Or try here for a scholarly treatment.)

At the highest level is usually a distinction between plants and animals. This doesn’t necessarily match the biologists’ distinction between Plantae and Animalia, but rather usually follows a distinction between things that don’t and do move under their own power. Even babies seem to make a big distinction between shapes on a screen that get passively pushed around, and shapes that move on their own. i.e. are animated.

Among larger animals (non-bugs/worms) the first large scale groups to receive a label of their own are almost always birds, fish, and snakes, in no particular order. These categories are telling: each represents a variety of locomotion (flying, swimming, slithering) other than the stereotypical mammalian walking/running. (Many folk classifications lump bats with birds and whales with fish, and they may also separate flightless birds like the cassowary from others.) So whether a creature moves on its own, and how it moves are central to folk categorizations of living kinds, even if not to modern scientific taxonomy. And so finding an animal that seems to be a missing link between two (psychologically) major domains of life — birds and terrestrial animals — is going to be a Big Deal, cognitively, upsetting people’s ideas that it takes God’s miraculous intervention to create animals that fly, or to condemn the Serpent to slither.

Devonian days

579-360 Mya

Lots going on in the Devonian

Forests are spreading. The first tree, Wattieza, is kin to ferns and horsetails. It stands 10 meters tall. No leaves yet, just fronds. The first forests will absorb carbon dioxide, and cool the planet.

wattieza

Life is moving onto land. Tiktaaklik roseae, the “fishapod” discovered in 2006, is as nice a link between fish and amphibians as one could hope for, with both lungs and gills. Here’s a book by Neil Shubin, the co-discoverer.

titaalik

You can see a lot further in the air than underwater. This may be one of the early selective pressures for evolving a proper neck and sticking one’s head out of water. Eventually, for some, the rest of the body would follow.

eyes out of water

And evolution seems to be generally speeded up on land. It’s not just that animals and plants develop adaptations for life on land (obviously). But there is also a more general acceleration in the pace of evolution. Major innovations come at a faster pace among terrestrial organisms.

The Burgess Shale and “Wonderful Life”

531-503 Mya

The Burgess Shale (about 510 Mya) is not the oldest Cambrian deposit known. There are deposits from China (Chengjiang) closer to the beginning of the era. But it is particularly rich and well studied. It also featured in debates about some Big Questions: How important are evolutionary laws versus historical accidents? Has the living world become more or less diverse over time?

Stephen Jay Gould (1941-2002) was one of the most widely known evolutionary biologists of his time. In 1989 he wrote a book about the Burgess Shale, called “Wonderful Life.” The title alluded to Frank Capra’s movie, “It’s a Wonderful Life,”* starring Jimmy Stewart. In the movie, the Stewart character, who thinks he’s wasted his life stuck in his home town, has a chance to see how things would have turned out if he had died young in an accident. He learns that his existence made a huge difference to his town.

Similarly, Gould argued that accidents of which Cambrian species survived and which went extinct made a huge difference to the later evolution of life. To make his case, he developed a subsidiary argument: that the Cambrian fauna displays a radical diversity of body plans in comparison with later eras. Gould made an analogy with the early development of automobiles, which featured diesel engines, steam engines, and electrical engines, before settling down on mostly just gasoline engines. (He was writing before Priuses and Teslas, of course.)

hallucigenia-wrong

hallucigenia-right

This subsidiary argument has not fared well. Most of the supposedly radically different forms from the Burgess Shale turn out to be not that radically different from one another, or from modern forms. Most notorious was the case of a specimen called Hallucigenia. Paleontologists thought that this creature was like nothing that ever lived before. But later more complete finds of related forms made it clear they were looking at it upside down; its “legs” are actually defensive spikes, the “tentacles” on top are actually legs. It’s probably related to the ancestor of velvet worms, a group related to vertebrates and still living in Australia. A different perspective comes from Simon Conway Morris one of the experts on the Burgess Shale, in in his book “Crucible of Creation.”

That aside however, the question of accident versus necessity, in evolution and in history, will continue to come up throughout the Logarithmic History year.

*Not to be confused with Jerome Bixby’s short story “It’s a Good Life,” about a very different small town.

When you were a tadpole and I was a fish

1.17-1.11 billion years ago

The Boring Billion rolls on. The atmosphere is one percent oxygen or so thanks to photosynthetic bacteria and algae. The ocean still largely anoxic and thick with sulfates and sulfate-eating bacteria. Eukaryotes have been around for a while, and are diversified, although still all single celled (as far as we know).

Sexual reproduction begins with eukaryotes, and by now some groups are presumably differentiated into male and female. For those of you who are not bdelloid rotifiers, here’s a poem for Valentine’s Day, by the biologist Langdon Smith. Martin Gardner has a nice account of the poem, in his book “When you were a tadpole and I was a fish,” and here’s a great video of the poem spoken by Jean Shepherd.

Evolution
By Langdon Smith (1858-1908)

When you were a tadpole and I was a fish
In the Paleozoic time,
And side by side on the ebbing tide
We sprawled through the ooze and slime,
Or skittered with many a caudal flip
Through the depths of the Cambrian fen,
My heart was rife with the joy of life,
For I loved you even then.

Mindless we lived and mindless we loved
And mindless at last we died;
And deep in the rift of the Caradoc drift
We slumbered side by side.
The world turned on in the lathe of time,
The hot lands heaved amain,
Till we caught our breath from the womb of death
And crept into life again.

We were amphibians, scaled and tailed,
And drab as a dead man’s hand;
We coiled at ease ‘neath the dripping trees
Or trailed through the mud and sand.
Croaking and blind, with our three-clawed feet
Writing a language dumb,
With never a spark in the empty dark
To hint at a life to come.

Yet happy we lived and happy we loved,
And happy we died once more;
Our forms were rolled in the clinging mold
Of a Neocomian shore.
The eons came and the eons fled
And the sleep that wrapped us fast
Was riven away in a newer day
And the night of death was passed.

Then light and swift through the jungle trees
We swung in our airy flights,
Or breathed in the balms of the fronded palms
In the hush of the moonless nights;
And oh! what beautiful years were there
When our hearts clung each to each;
When life was filled and our senses thrilled
In the first faint dawn of speech.

Thus life by life and love by love
We passed through the cycles strange,
And breath by breath and death by death
We followed the chain of change.
Till there came a time in the law of life
When over the nursing sod
The shadows broke and the soul awoke
In a strange, dim dream of God.

I was thewed like an Auroch bull
And tusked like the great cave bear;
And you, my sweet, from head to feet
Were gowned in your glorious hair.
Deep in the gloom of a fireless cave,
When the night fell o’er the plain
And the moon hung red o’er the river bed
We mumbled the bones of the slain.

I flaked a flint to a cutting edge
And shaped it with brutish craft;
I broke a shank from the woodland lank
And fitted it, head and haft;
Then I hid me close to the reedy tarn,
Where the mammoth came to drink;
Through the brawn and bone I drove the stone
And slew him upon the brink.

Loud I howled through the moonlit wastes,
Loud answered our kith and kin;
From west to east to the crimson feast
The clan came tramping in.
O’er joint and gristle and padded hoof
We fought and clawed and tore,
And cheek by jowl with many a growl
We talked the marvel o’er.

I carved that fight on a reindeer bone
With rude and hairy hand;
I pictured his fall on the cavern wall
That men might understand.
For we lived by blood and the right of might
Ere human laws were drawn,
And the age of sin did not begin
Til our brutal tush was gone.

And that was a million years ago
In a time that no man knows;
Yet here tonight in the mellow light
We sit at Delmonico’s.
Your eyes are deep as the Devon springs,
Your hair is dark as jet,
Your years are few, your life is new,
Your soul untried, and yet –

Our trail is on the Kimmeridge clay
And the scarp of the Purbeck flags;
We have left our bones in the Bagshot stones
And deep in the Coralline crags;
Our love is old, our lives are old,
And death shall come amain;
Should it come today, what man may say
We shall not live again?

God wrought our souls from the Tremadoc beds
And furnish’d them wings to fly;
He sowed our spawn in the world’s dim dawn,
And I know that it shall not die,
Though cities have sprung above the graves
Where the crook-bone men made war
And the ox-wain creaks o’er the buried caves
Where the mummied mammoths are.

Then as we linger at luncheon here
O’er many a dainty dish,
Let us drink anew to the time when you
Were a tadpole and I was a fish.

Between Darwin and Saint Valentine

Yesterday was Darwin’s birthday (and Lincoln’s). Tomorrow is Valentine’s Day. Here’s a post appropriate for either day.

Imagine sex worked like this:

You’ve been feeling bad lately, getting sick a lot. You’re not at your best. You find someone who seems to be in better shape. One thing leads to another and you wind up acquiring body fluids from the other party – and picking up some new genes from them. The new genes help a lot in fighting off infection. You’re feeling better now.

Reproduction? That’s another matter, nothing directly to do with sex. When you reproduce, your offspring will carry all the genes you happen to have at the moment.

Also, I forgot to mention that you’re neither male or female – the gene exchange could have gone in the other direction if you’d both been in the mood. And your partner in the adventure above might not even have been the same species as you. (Just what counts as a species here isn’t well-defined.)

This is more or less how bacteria work out sex. (Joshua Lederberg got the Nobel Prize for figuring this out.) Eukaryotes (you’re one of them) mostly do it differently, combining sex and reproduction. It’s the story you learned in high school about passing on half your genes to a gamete (sex cell), which joins with another gamete to make a new organism.

Most eukaryotes also have two sexes. The best theory we have about why that got started goes like this: Most of the DNA in a eukaryote cell is in the nucleus. But a small fraction is in the mitochondria, little powerhouses outside the nucleus that started out as bacteria, and got domesticated. Imagine that two gametes join together, and combine two sets of mitochondria. There’s a potential conflict here. Suppose your mitochondria have a mutation that lets them clobber your partner’s mitochondria. This is good (evolutionarily speaking) for the winning mitochondria, but very likely to be bad for the cell as a whole. Better for the cell as a whole is if one gamete, acting on instructions from the nucleus, preemptively clobbers all their own mitochondria, so that all the mitochondria come from just the other gamete. This is the beginning of what will eventually lead to a distinction between sperm and eggs, pollen and ovules, male and female. Which means you got all your mitochondrial DNA from your mom, something that will turn out to be important when we look later in the year at geneticists unraveling human prehistory. This is also an example of how selection at one level (within cells) can conflict with selection at another level (between cells). We’ll see such multilevel selection again and again, for example in the evolution of complex human societies.

Sex has to be highly advantageous, although we’re not sure exactly what the advantage is. When eukaryote species give it up, they don’t seem to last long. Dandelions reproduce asexually: based on what we see in other organisms, they probably won’t be around for long, evolutionarily speaking. There’s one mysterious exception, tiny animals called bdelloid rotifers which have been reproducing asexually for tens of millions of years . For readers who are not bdelloid rotifers: Happy Valentine’s Day tomorrow! We’ll have an appropriate evolutionary post up tomorrow

Evolution and broken symmetries

8.33-7.88 billion years ago.

No big news in the universe today. Some evolutionary thoughts: Species evolve. Do planets? stars? galaxies?

Charles Darwin didn’t use the word “evolution” often. But he did write a lot about “descent with modification,” which is pretty much what biologists mean by evolution. For example, the usual definition of genetic evolution is “change in gene frequency,” i.e. descent with (genetic) modification.

However, people sometimes talk about evolution that doesn’t involve descent with modification, in contexts that have nothing much to do with biological evolution – cosmic evolution or stellar evolution in the history of the universe, for example, or mineral evolution in the history of the earth. Another Victorian writer, the sociologist and philosopher Herbert Spencer, offered a definition of evolution that might cover these cases.

Evolution is an integration of matter and concomitant dissipation of motion; during which the matter passes from an indefinite, incoherent homogeneity to a definite, coherent heterogeneity.

It’s easy to make fun of this definition. It’s the sort of abstract word pile that style manuals tell you to avoid, and that gives sociology a bad name. For that matter, it’s easy to make fun of Herbert Spencer. He may be some of the inspiration for the character of Mr. Casaubon, the dried up, impotent pedant in George Eliot’s “Middlemarch.” (Spencer probably turned down a chance to marry George Eliot = Mary Ann Evans. You should be careful about offending a writer.) But it may be that Spencer was groping toward the important modern concepts of symmetry and symmetry breaking.

A simple example: imagine you’re holding a bicycle exactly upright. The bicycle is pretty much bilaterally (mirror image) symmetrical. (OK, not really, the gears are on the right side, so it’s not a perfect mirror image. But just pretend …) Now let go of the bike. It will fall to one side or the other. The symmetry is broken, and you need one extra “bit” of information to tell you which side the bicycle is on.

Symmetry breaking is a fundamental concept in physics. In the very early history of the universe, the four forces of nature — gravitational, strong, weak, and electromagnetic – were united, but then as the universe cooled, one by one, these forces broke the symmetry and turned into separate forces. More symmetry breaking generated elementary particles, and nuclei, and atoms. When atoms first formed, they were distributed symmetrically through the universe as a diffuse gas. But gravitation pulled atoms and other particles together into clumps, leaving other parts of space emptier, and the spatial symmetry was broken (a “translational” symmetry in this case).

Symmetry breaking will keep showing up throughout the history of the universe. Consider sexual reproduction. A simple early form of sex involved two equal sized gametes (sex cells) joining to produce a new organism. Some species still do it this way. But more commonly the symmetry is broken – some organs or organisms produce little gametes that move around easily (sperm or pollen), others produce big gametes that don’t move around so easily (eggs or ovules). We call the first sort of organs or organisms male and the second sort female. Sex in most multi-cellular organisms is a broken symmetry. This broken symmetry will go on to have a dramatic consequences for human social evolution. It entails, for example, that patrilineages can expand their size much more rapidly than matrilineages.

Or consider the rise of political stratification, the move from small-scale societies where “every man is a chief” to large-scale societies of chiefs and commoners, rulers and ruled. Another broken symmetry. It may be more or less an accident (good or bad luck, Game of Thrones style) who ends up being king, but it’s not an accident that somebody is, past a certain social scale.

We don’t attach much moral significance to broken symmetries where the physical world is concerned. You’re being way too sensitive if you feel sorry for the poor weak nuclear force that missed its chance to be the strong nuclear force, or for the dwarf galaxies that got cruelly tossed around and cannibalized by the Milky Way. Broken symmetries in social life – males and females, kings and commoners – are another matter …