Tag Archives: monkeys

Planet of the apes

The Miocene (23 – 5 million years ago) is a period of extraordinary success for our closest relatives, the apes. Overall there may have been as many as a hundred ape species during the epoch. Proconsul (actually several species) is one of the earliest. We will meet just a few of the others over the course of the Miocene, as some leave Africa for Asia, and some (we think) migrate back.

Sometimes evolution is a story of progress – not necessarily moral progress, but at least progress in the sense of more effective animals replacing less effective. For example, monkeys and apes largely replace other primates (prosimians, relatives of lemurs and lorises) over most of the world after the Eocene, with lemurs flourishing only on isolated Madagascar. This replacement is probably a story of more effective forms outcompeting less effective. And the expansion of brain size that we see among many mammalian lineages throughout the Cenozoic is probably another example of progress resulting from evolutionary arms races.

But measured by the yardstick of evolutionary success, (non-human) apes — some of the brainiest animals on the planet — will turn out not to be all that effective after the Miocene. In our day, we’re down to just about four species of great ape (chimpanzees, bonobos, gorillas, and orangutans), none of them very successful. Monkeys, with smaller body sizes and more rapid reproductive rates, are doing better. For that matter, the closest living relatives of primates (apart from colugos and tree shrews) are rodents, who are doing better still, mostly by reproducing faster than predators can eat them.

So big brains aren’t quite the ticket to evolutionary success that, say, flight has been for birds. One issue for apes may be that with primate rules for brain growth – double the brain size means double the neurons means double the energy cost – a large-bodied, large brained primate (i.e. an ape) is going to face a serious challenge finding enough food to keep its brain running. It’s not until a later evolutionary period that one lineage of apes really overcomes this problem, with a combination of better physical technology (stone tools, fire) and better social technology (enlisting others to provision mothers and their dependent offspring).

Dead baby monkeys

There’s a dark side to being a primate. Last year a review article summarized data on rates of lethal aggression in non-human animals. The figure below shows some of the results. Several clusters of especially violent species stand out in the figure, including primates.

dead monkeys

Much of the lethal aggression in primates involves infanticide. Sarah Hrdy demonstrated back in the 1970s that infanticide occurs regularly in Hanuman langurs, monkeys in India. A male who takes over a group of females will systematically kill offspring sired by the previous male. If you think evolution is about the survival of the species, this is hard to explain. But it makes sense given the logic of the selfish gene. Females who lose an infant return more quickly to breeding again, and the father of the next infant is likely to be the killer of the previous one.

Primates may be particularly vulnerable to this grim logic, because they spend a long time as infants. Commonly L/G>1, that is to say, the time, L, a female spends lactating for an infant (during which she is unlikely to conceive), is usually greater than the time, G, she spends gestating an infant. This puts particular pressure on males to hurry things along by eliminating nursing infants fathered by other males.

As a result, infanticide is relatively common among primates, and females under particularly strong pressure to find ways to avoid it. Hanuman langurs live in one-male units, where a female has little choice about who she mates with. In other species, by contrast (most baboons, chimpanzees), multiple males reside with multiple females. In these species females are often sexually promiscuous, sometimes actively soliciting multiple males for sex. This is probably mostly a matter of confusing paternity sufficiently to suppress the threat of infanticide. There’s a general lesson here: female promiscuity generally has different evolutionary roots than male promiscuity.

The monkey’s voyage

The Oligocene sees a major diversification of anthropoid primates (monkeys, apes, and humans). Among the anthropoids, the major evolutionary split is a geographic one, between platyrrhines (New World monkeys) and catarrhines (Old World monkeys, apes, and humans). Aegyptopithecus is one of the earliest primates that clearly falls on the catarrhine side of that split (although the split must go back earlier).

At Logarithmic History we traffic in Big Questions, and one of the biggest questions of all is the balance of natural law and accident in making our world. Thus physicists have long hoped to find that the laws governing our universe reduce to just a few fundamental equations, but we saw at the beginning of this blog that they are now confronting the possibility that our universe is just one among many, and that the laws of physics in our universe may incorporate a large dose of historical accident. With the discovery of extra-solar planets, we’re just beginning to get an idea of how typical or atypical our solar system is. And we’ll have a lot of opportunities to ask whether there are Laws of History (an old idea now undergoing a revival in the new field of cliodynamics*) when we move into the historical period later in the year.

The field of biogeography – the study of the geographic distribution of species – has seen some major pendulum swings in this regard. Darwin was intensely interested in questions of biogeography mainly because they could provide support for the theory of evolution. His approach could fairly be called eclectic. From sometime in the second half of the twentieth century however, a lot of biologists thought they could do better than just answering particularistic questions about how species A got to island Z. They wanted to find scientific laws.

Edward O. Wilson was an early pioneer in this area. Along with Robert MacArthur, he developed a theory of island biogeography according to which the number of species on an island is set by a predictable equilibrium between extinction (smaller islands have higher extinction rates) and colonization (remote islands have lower colonization rates). Being a good scientist he actually put this theory to the test by getting an exterminator to “defaunate” (it means what you think it means) some little mangrove islets, and showing that they returned to very close to their predicted equilibrium numbers of animal species after a while.

For the biogeography of continents (and larger islands once part of continents) the quest for scientific laws took a different turn. The discovery of continental drift and plate tectonics encouraged a school of “vicariance biogeography.” Vicariance biogeographers liked to trace current biogeographic distributions to the wanderings of continents. They were highly allergic to explanations involving accidental long-distance dispersal over big stretches of ocean.

Alan de Queiroz, in The Monkey’s Voyage: How Improbable Journeys Shaped the History of Life, provides a highly readable overview of the decline (if not quite the extinction) of the vicariance school in the face of mounting evidence for flukish dispersals as a major factor in biogeography. The dispersal of monkeys to the New World is a dramatic case in point. (Guinea pigs and their relatives are another.) About the only scenario that makes sense involves a raft of trees washing out to sea (most likely from the Congo basin) and eventually delivering a few parched, scared monkeys to the island continent of South America, where they eventually spawned the whole range of species – spider monkeys, squirrel monkeys, howler monkeys, tamarins, marmosets, capuchins – we know today. Sheer accident: change the weather a little, leave the monkeys stranded at sea a little longer, and the whole history of primates in the New World is erased.

* so new my spellchecker doesn’t recognize it.

Planet of the apes*

The Miocene (23 – 5 million years ago) is a period of extraordinary success for our closest relatives, the apes. Overall there may have been as many as a hundred ape species during the epoch. Proconsul (actually several species) is one of the earliest. We will meet just a few of the others over the course of the Miocene, as some leave Africa for Asia, and some (we think) migrate back.

Sometimes evolution is a story of progress – not necessarily moral progress, but at least progress in the sense of more effective animals replacing less effective. For example, monkeys and apes largely replace other primates (prosimians, relatives of lemurs and lorises) over most of the world after the Eocene, with lemurs flourishing only on isolated Madagascar. This replacement is probably a story of more effective forms outcompeting less effective. And the expansion of brain size that we see among many mammalian lineages throughout the Cenozoic is probably another example of progress resulting from evolutionary arms races.

But measured by the yardstick of evolutionary success, (non-human) apes — some of the brainiest animals on the planet — will turn out not to be all that effective after the Miocene. In our day, we’re down to just about four species of great ape (chimpanzees, bonobos, gorillas, and orangutans), none of them very successful. Monkeys, with smaller body sizes and more rapid reproductive rates, are doing better. For that matter, the closest living relatives of primates (apart from colugos and tree shrews) are rodents, who are doing better still, mostly by reproducing faster than predators can eat them.

So big brains aren’t quite the ticket to evolutionary success that, say, flight has been for birds. Why have brains worked out so well for us (so far)?

* I only get to use this once for a blog post title. Hope I don’t regret it.

The monkey’s voyage

The Oligocene sees a major diversification of anthropoid primates (monkeys, apes, and humans). Among the anthropoids, the major evolutionary split is a geographic one, between platyrrhines (New World monkeys) and catarrhines (Old World monkeys, apes, and humans). Aegyptopithecus is one of the earliest primates that clearly falls on the catarrhine side of that split (although the split must go back earlier).

At Logarithmic History we traffic in Big Questions, and one of the biggest questions of all is the balance of natural law and accident in making our world. Thus physicists have long hoped to find that the laws governing our universe reduce to just a few fundamental equations, but we saw at the beginning of this blog that they are now confronting the possibility that our universe is just one among many, and that the laws of physics in our universe may incorporate a large dose of historical accident. With the discovery of extra-solar planets, we’re just beginning to get an idea of how typical or atypical our solar system is. And we’ll have a lot of opportunities to ask whether there are Laws of History (an old idea now undergoing a revival in the new field of cliodynamics*) when we move into the historical period later in the year.

The field of biogeography – the study of the geographic distribution of species – has seen some major pendulum swings in this regard. Darwin was intensely interested in questions of biogeography mainly because they could provide support for the theory of evolution. His approach could fairly be called eclectic. From sometime in the second half of the twentieth century however, a lot of biologists thought they could do better than just answering particularistic questions about how species A got to island Z. They wanted to find scientific laws.

Edward O. Wilson was an early pioneer in this area. Along with Robert MacArthur, he developed a theory of island biogeography according to which the number of species on an island is set by a predictable equilibrium between extinction (smaller islands have higher extinction rates) and colonization (remote islands have lower colonization rates). Being a good scientist he actually put this theory to the test by getting an exterminator to “defaunate” (it means what you think it means) some little mangrove islets, and showing that they returned to very close to their predicted equilibrium numbers of animal species after a while.

For the biogeography of continents (and larger islands once part of continents) the quest for scientific laws took a different turn. The discovery of continental drift and plate tectonics encouraged a school of “vicariance biogeography.” Vicariance biogeographers liked to trace current biogeographic distributions to the wanderings of continents. They were highly allergic to explanations involving accidental long-distance dispersal over big stretches of ocean.

Alan de Queiroz, in The Monkey’s Voyage: How Improbable Journeys Shaped the History of Life, provides a highly readable overview of the decline (if not quite the extinction) of the vicariance school in the face of mounting evidence for flukish dispersals as a major factor in biogeography. The dispersal of monkeys to the New World is a dramatic case in point. (Guinea pigs and their relatives are another.) About the only scenario that makes sense involves a raft of trees washing out to sea (most likely from the Congo basin) and eventually delivering a few parched, scared monkeys to the island continent of South America, where they eventually spawned the whole range of species – spider monkeys, squirrel monkeys, howler monkeys, tamarins, marmosets, capuchins – we know today. Sheer accident: change the weather a little, leave the monkeys stranded at sea a little longer, and the whole history of primates in the New World is erased.

* so new my spellchecker doesn’t recognize it.

Planet of the apes*

The Miocene (23 – 5 million years ago) is a period of extraordinary success for our closest relatives, the apes. Overall there may have been as many as a hundred ape species during the epoch. Proconsul (actually several species) is one of the earliest. We will meet just a few of the others over the course of the Miocene, as some leave Africa for Asia, and some (we think) migrate back.

Sometimes evolution is a story of progress – not necessarily moral progress, but at least progress in the sense of more effective animals replacing less effective. For example, monkeys and apes largely replace other primates (prosimians, relatives of lemurs and lorises) over most of the world after the Eocene, with lemurs flourishing only on isolated Madagascar. This replacement is probably a story of more effective forms outcompeting less effective. And the expansion of brain size that we see among many mammalian lineages throughout the Cenozoic is probably another example of progress resulting from evolutionary arms races.

But measured by the yardstick of evolutionary success, (non-human) apes — some of the brainiest animals on the planet — will turn out not to be all that effective after the Miocene. In our day, we’re down to just about four species of great ape (chimpanzees, bonobos, gorillas, and orangutans), none of them very successful. Monkeys, with smaller body sizes and more rapid reproductive rates, are doing better. For that matter, the closest living relatives of primates (apart from colugos and tree shrews) are rodents, who are doing better still, mostly by reproducing faster than predators can eat them.

So big brains aren’t quite the ticket to evolutionary success that, say, flight has been for birds. Why have brains worked out so well for us (so far)?

* I only get to use this once for a blog post title. Hope I don’t regret it.

The monkey’s voyage

The Oligocene sees a major diversification of anthropoid primates (monkeys, apes, and humans). Among the anthropoids, the major evolutionary split is a geographic one, between platyrrhines (New World monkeys) and catarrhines (Old World monkeys, apes, and humans). Aegyptopithecus is one of the earliest primates that clearly falls on the catarrhine side of that split (although the split must go back earlier).

At Logarithmic History we traffic in Big Questions, and one of the biggest questions of all is the balance of natural law and accident in making our world. Thus physicists have long hoped to find that the laws governing our universe reduce to just a few fundamental equations, but we saw at the beginning of this blog that they are now confronting the possibility that our universe is just one among many, and that the laws of physics in our universe may incorporate a large dose of historical accident. With the discovery of extra-solar planets, we’re just beginning to get an idea of how typical or atypical our solar system is. And we’ll have a lot of opportunities to ask whether there are Laws of History (an old idea now undergoing a revival in the new field of cliodynamics*) when we move into the historical period later in the year.

The field of biogeography – the study of the geographic distribution of species – has seen some major pendulum swings in this regard. Darwin was intensely interested in questions of biogeography mainly because they could provide support for the theory of evolution. His approach could fairly be called eclectic. From sometime in the second half of the twentieth century however, a lot of biologists thought they could do better than just answering particularistic questions about how species A got to island Z. They wanted to find scientific laws.

Edward O. Wilson was an early pioneer in this area. Along with Robert MacArthur, he developed a theory of island biogeography according to which the number of species on an island is set by a predictable equilibrium between extinction (smaller islands have higher extinction rates) and colonization (remote islands have lower colonization rates). Being a good scientist he actually put this theory to the test by getting an exterminator to “defaunate” (it means what you think it means) some little mangrove islets, and showing that they returned to very close to their predicted equilibrium numbers of animal species after a while.

For the biogeography of continents (and larger islands once part of continents) the quest for scientific laws took a different turn. The discovery of continental drift and plate tectonics encouraged a school of “vicariance biogeography.” Vicariance biogeographers liked to trace current biogeographic distributions to the wanderings of continents. They were highly allergic to explanations involving accidental long-distance dispersal over big stretches of ocean.

Alan de Queiroz, in The Monkey’s Voyage: How Improbable Journeys Shaped the History of Life, provides a highly readable overview of the decline (if not quite the extinction) of the vicariance school in the face of mounting evidence for flukish dispersals as a major factor in biogeography. The dispersal of monkeys to the New World is a dramatic case in point. (Guinea pigs and their relatives are another.) About the only scenario that makes sense involves a raft of trees washing out to sea (most likely from the Congo basin) and eventually delivering a few parched, scared monkeys to the island continent of South America, where they eventually spawned the whole range of species – spider monkeys, squirrel monkeys, howler monkeys, tamarins, marmosets, capuchins – we know today. Sheer accident: change the weather a little, leave the monkeys stranded at sea a little longer, and the whole history of primates in the New World is erased.

* so new my spellchecker doesn’t recognize it.