Tag Archives: monkeys

What do women want?

1.38-1.31 million years ago

As we noted in the last post, human females conceal ovulation (no chimp-style monthly sexual swellings) but advertise nubility (with conspicuous fat deposits). Presumably this has to do with sexual selection, via male mate choice. But sexual selection may have operated in the opposite direction, on male anatomy, as well.

Males of most primate species have a baculum, or penis bone. Human beings and spider monkeys are the exceptions. (A mnemonic: the mammals with penis bones are PRICCs – primates, rodents, insectivores, carnivores, chiropterans=bats.) The baculum helps to retract the penis when it’s not in use, so males in our species, lacking a penis bone, have more conspicuous dangling organs than most primate males.

This information comes from a recent book The Evolution of Beauty: How Darwin’s Forgotten Theory of Mate Choice Shapes the Animal World – and Us, by Robert Prum. Prum also cites a paper arguing that Adam’s “rib” (Hebrew tsela), the thing God used to make Eve (Genesis 2:21-23), was actually his baculum, providing a creationist explanation of “congenital human baculum deficiency.” The book contains lots of interesting tidbits like this, although its central argument – that sexual selection via mate choice is largely a result of non-adaptive aesthetic preferences – is shaky.

Men’s penises lack something else found in most primate species: most male primates have keratinized spines on their penises. But a gene involved in the development of penis spines got turned off in our evolutionary lineage, some time after our split with chimps, but before our split with Neanderthals. We’re not sure why. Penis spines might be favored in promiscuously mating species if they help one male dredge out sperm left by earlier matings with other males. So (relative) monogamy in our lineage might remove the evolutionary advantage of spines. But a non-spiny penis might also be less sensitive, and make for more prolonged intercourse.

If all this doesn’t answer the question “What do women want?”, it at least narrows down the possibilities a bit: not men with bony, spiny penises, apparently.

High fidelity

Arms races have been a big engine of evolutionary progress, both in biological evolution and in the evolution of human societies. Another big driver has been improvements in the fidelity of inheritance. We see this in the evolution of genetic systems, including the evolution of life itself, and of the eukaryotic chromosome. And we’ll see it in human social evolution, including the evolution of language, of writing, of the alphabet, and printing.

Both arms races and improved information transmission may have been factors in the evolution of braininess.

jerison brain race

The figure above is from the classic work of Harry Jerison, one of the pioneers in studying the evolution of brain size. It’s several steps away from the raw data, but what it shows is how mammalian Encephalization Quotients (EQs), a measure of brain size relative to body size, evolved over the Cenozoic. The figure might be read as the record of a brainy arms race between prey and predators, leading to increased variance in the EQ bell curve for both.

Primates of course are particularly brainy mammals. One popular explanation for this is a series of arms races within species, with bright monkeys and apes outwitting dimmer ones. This has been called the Machiavellian Intelligence hypothesis (or, in the case of macaques, macachiavellian intelligence).

macachiavellian

This hypothesis may not hold up too well, however. One complication is that, contrary to what a lot of evolutionary psychology might suggest, social intelligence in primates is not separate from other sorts of intelligence. The same primate species that are good at solving social problem (e.g. tricking other group members) are also clever about things like tool use and other complex foraging skills. Variation in intelligence across primate species mostly boils down to a single general factor, rather than a bunch of domain-specific aptitudes.

Also, the latest research suggests that variation in diet and ecology, like the distinction between fruit eaters (brainy) and leaf eaters (not-so-much), accounts a lot of variation in brain size, while differences in social complexity (measured by group size) don’t seem to matter.

An alternative to the Machiavellian Intelligence hypothesis is the cultural intelligence hypothesis, with brainier animals more likely to innovate and more likely to learn others’ innovations. The first part pf this equation holds up: across various groups of organisms, including birds and primates, brainy animals are more flexible in their behavior, more likely to discover new adaptive behaviors, and more successful in colonizing novel environments. The second part is trickier. In recent years we’ve learned that learning useful information by observing others (go ahead, call it culture, if you want to annoy anthropologists) is extremely widespread, and found in organisms like guppies and honeybees that no one thinks are terribly bright. So learning from others doesn’t take special smarts.

Where bigger brained animals may excel is not in how much social learning they do, but in how accurately they do it – in copying fidelity. Theoretical models of the evolution of copying suggest that accurate copying makes a big difference. Small changes in copying fidelity can lead to large changes in the persistence of cultural traits. Of course this will crucially important for human evolution: more on this in days to come.

copying fidelity

The expected lifetime, measured in generations, of a cultural trait as a function of the efficiency of social learning (p). Each learning trial uses a new cultural parent drawn from the parent population (see text). Parameter value: n 1⁄4 2.

For a wide-ranging introduction to this rapidly advancing area of research, written by a leader in the field, try Darwin’s Unfinished Symphony: How Culture Made the Human Mind.

Dead baby monkeys

There’s a dark side to being a primate. A few years back a review article summarized data on rates of lethal aggression in non-human animals. The figure below shows some of the results. Several clusters of especially violent species stand out in the figure, including primates (redder is more violent). Bats are pretty nice, though.

dead monkeys

Much of the lethal aggression in primates involves infanticide. Sarah Hrdy demonstrated back in the 1970s that infanticide occurs regularly in Hanuman langurs, monkeys in India. A male who takes over a group of females will systematically kill offspring sired by the previous male. If you think evolution is about the survival of the species, this is hard to explain. But it makes sense given the logic of the selfish gene. Females who lose an infant return more quickly to breeding again, and the father of the next infant is likely to be the killer of the previous one.

Primates may be particularly vulnerable to this grim logic, because they spend a long time as infants. Among primates, commonly,

L/G>1

That is to say that the time, L, a female spends lactating for an infant (during which she is unlikely to conceive), is usually greater than the time, G, she spends gestating an infant. This puts particular pressure on males to hurry things along by eliminating nursing infants fathered by other males.

astyanax

As a result, infanticide is relatively common among primates, and females under particularly strong pressure to find ways to avoid it. Hanuman langurs live in one-male units, where a female has little choice about who she mates with. In other species, by contrast (most baboons, chimpanzees), multiple males reside with multiple females. In these species females are often sexually promiscuous, sometimes actively soliciting multiple males for sex. This is probably mostly a matter of confusing paternity sufficiently to suppress the threat of infanticide. There’s a general lesson here: females are not always monogamously inclined, but female promiscuity generally has different evolutionary roots than male promiscuity.

Ground-up monkey brains

Short version: It looks like most mammals, at least most large animals, have the brains they need, while primates, especially large primates, have the brains they can afford.

One reason for being interested in monkeys is that they’re brainy mammals. Here’s the conventional graph illustrating that:

brain size

Larger mammals tend to have larger brains, but the relationship is non-linear. Multiplying body mass by x doesn’t multiply brain mass by x. Instead it multiplies brain mass by about x.75. In other words, Brain Mass is proportional to (Body Mass).75. Equivalently (taking the logarithm of both sides) Log[Brain Mass] is equal to .75 times Log[Body Mass], plus a constant. So Log[Brain Mass] plotted against Log[Body Mass] gives a straight line with a slope of .75. That means that if one mammal has 16 times the body mass of another, it’s expected to have 8 times the brain mass. 10,000 times the body mass means 1000 times the brain mass. The thing to note is that primates defy expectations. They have larger brains than would be expected based on their body sizes.

But we’ve recently learned that primates – especially big ones – are even more special than this graph suggests. Susan Herculano-Houzel has pioneered a technique that involves chopping up brains (or parts of brains), dissolving their cells to make a kind of brain soup, and counting cell nuclei. This allows her to estimate how many neurons there are in different brains.

monkey brain soup

Major findings: Among most mammals, the number of neurons increases more slowly than brain size. Increase brain size by x, and you increase number of neurons by about x.67. (H-H shows this flipped around. Increase number of neurons by x and you increase brain mass by x1.5.) But primates are exceptional; the relationship is nearly linear. An x-fold increase in primate brain size corresponds to about an x-fold increase in number of neurons. Humans follow the primate rule here. We have about the same density of neurons as other primates. When you combine the exceptionally large brain sizes of humans with a standard high primate neuron density, you get an animal with an enormous number of neurons. By contrast, a rodent with a human sized brain, if it followed rodent rules for how neuron numbers increase with brain size, would have only 1/7 as many neurons.

Neurons are expensive. Most large animals economize by cutting back on neuron density. A cubic centimeter of cow brain has fewer neurons, and consumes energy at a lower rate, than a cubic centimeter of mouse brain. By contrast, large primates are extravagant, devoting exceptionally large energy budgets to running their brains. And human brains are exceptionally costly. An important question for the study of human evolution is how we paid the bill for such costly brains. That’s a story for later. But another part of the story starts back in the early Cenozoic, when monkeys committed to a different set of rules for building brains.

And here is a chart giving absolute numbers of  cortical neurons (cneurons) for a bunch of species. Scott Alexander has some thoughts about the moral implications. Short version: lobster for dinner, skip the pork. (And skip the elephant, chimp, and manflesh. But you knew that.)

neuron number

The monkey’s voyage

33.9-32.1 million years ago

The Oligocene (starting today on Logarithmic History) sees a major diversification of anthropoid primates (monkeys, apes, and humans). Among the anthropoids, the major evolutionary split is a geographic one, between platyrrhines (New World monkeys) and catarrhines (Old World monkeys, apes, and humans). Aegyptopithecus is one of the earliest primates that clearly falls on the catarrhine side of that split (although the split must go back earlier).

At Logarithmic History we traffic in Big Questions, and one of the biggest questions of all is the balance of natural law and accident in making our world. Thus physicists have long hoped to find that the laws governing our universe reduce to just a few fundamental equations, but we saw at the beginning of this blog that they are now confronting the possibility that our universe is just one among many, and that the laws of physics in our universe may incorporate a large dose of historical accident. With the discovery of extra-solar planets, we’re just beginning to get an idea of how typical or atypical our solar system is. And we’ll have a lot of opportunities to ask whether there are Laws of History (an old idea now undergoing a revival in the new field of cliodynamics*) when we move into the historical period later in the year.

The field of biogeography – the study of the geographic distribution of species – has seen some major pendulum swings in this regard. Darwin was intensely interested in questions of biogeography mainly because they could provide support for the theory of evolution. His approach could fairly be called eclectic. From sometime in the second half of the twentieth century however, a lot of biologists thought they could do better than just answering particularistic questions about how species A got to island Z. They wanted to find scientific laws.

Edward O. Wilson was an early pioneer in this area. Along with Robert MacArthur, he developed a theory of island biogeography which was supposed to get the field out of its natural history phase, and turn it into a predictive science. According to MacArthur and Wilson, the number of species on an island is set by a predictable equilibrium between extinction (smaller islands have higher extinction rates) and colonization (remote islands have lower colonization rates). Being a good scientist Wilson actually put this theory to the test by getting an exterminator to “defaunate” (it means what you think it means) some little mangrove islets, and showing that they returned to very close to their predicted equilibrium numbers of animal species after a while.

For the biogeography of continents (and larger islands once part of continents) the quest for scientific laws took a different turn. The discovery of continental drift and plate tectonics encouraged a school of “vicariance biogeography.” Vicariance biogeographers liked to trace current biogeographic distributions to the wanderings of continents. They were highly allergic to explanations involving accidental long-distance dispersal over big stretches of ocean.

Alan de Queiroz, in The Monkey’s Voyage: How Improbable Journeys Shaped the History of Life, provides a highly readable overview of the decline (if not quite the extinction) of the vicariance school in the face of mounting evidence for flukish dispersals as a major factor in biogeography. The dispersal of monkeys to the New World is a dramatic case in point. (Guinea pigs and their relatives are another.) About the only scenario that makes sense involves a raft of trees washing out to sea (most likely from the Congo basin) and eventually delivering a few parched, scared monkeys to the island continent of South America, where they eventually spawned the whole range of species – spider monkeys, squirrel monkeys, howler monkeys, tamarins, marmosets, capuchins – we know today. Sheer accident: change the weather a little, leave the monkeys stranded at sea a little longer, and the whole history of primates in the New World is erased.

* so new my spellchecker doesn’t recognize it.

Planet of the apes

22.9-21.6 million years ago

The Miocene (23 – 5 million years ago) is a period of extraordinary success for our closest relatives, the apes. Overall there may have been as many as a hundred ape species during the epoch. Proconsul (actually several species) is one of the earliest. We will meet just a few of the others over the course of the Miocene, as some leave Africa for Asia, and some (we think) migrate back.

Sometimes evolution is a story of progress – not necessarily moral progress, but at least progress in the sense of more effective animals replacing less effective. For example, monkeys and apes largely replace other primates (prosimians, relatives of lemurs and lorises) over most of the world after the Eocene, with lemurs flourishing only on isolated Madagascar. This replacement is probably a story of more effective forms outcompeting less effective. And the expansion of brain size that we see among many mammalian lineages throughout the Cenozoic is probably another example of progress resulting from evolutionary arms races.

But measured by the yardstick of evolutionary success, (non-human) apes — some of the brainiest animals on the planet — will turn out not to be all that effective after the Miocene. In our day, we’re down to just about four species of great ape (chimpanzees, bonobos, gorillas, and orangutans), none of them very successful. Monkeys, with smaller body sizes and more rapid reproductive rates, are doing better. For that matter, the closest living relatives of primates (apart from colugos and tree shrews) are rodents, who are doing better still, mostly by reproducing faster than predators can eat them.

So big brains aren’t quite the ticket to evolutionary success that, say, flight has been for birds. One issue for apes may be that with primate rules for brain growth – double the brain size means double the neurons means double the energy cost – a large-bodied, large brained primate (i.e. an ape) is going to face a serious challenge finding enough food to keep its brain running. It’s not until a later evolutionary period that one lineage of apes really overcomes this problem, with a combination of better physical technology (stone tools, fire) and better social technology (enlisting others to provision mothers and their dependent offspring).

Dead baby monkeys

There’s a dark side to being a primate. A few years back a review article summarized data on rates of lethal aggression in non-human animals. The figure below shows some of the results. Several clusters of especially violent species stand out in the figure, including primates (redder is more violent).

dead monkeys

Much of the lethal aggression in primates involves infanticide. Sarah Hrdy demonstrated back in the 1970s that infanticide occurs regularly in Hanuman langurs, monkeys in India. A male who takes over a group of females will systematically kill offspring sired by the previous male. If you think evolution is about the survival of the species, this is hard to explain. But it makes sense given the logic of the selfish gene. Females who lose an infant return more quickly to breeding again, and the father of the next infant is likely to be the killer of the previous one.

Primates may be particularly vulnerable to this grim logic, because they spend a long time as infants. Among primates, commonly,

L/G>1

That is to say that the time, L, a female spends lactating for an infant (during which she is unlikely to conceive), is usually greater than the time, G, she spends gestating an infant. This puts particular pressure on males to hurry things along by eliminating nursing infants fathered by other males.

astyanax

The Death of Astyanax. E-T Blanchard, 1868

As a result, infanticide is relatively common among primates, and females under particularly strong pressure to find ways to avoid it. Hanuman langurs live in one-male units, where a female has little choice about who she mates with. In other species, by contrast (most baboons, chimpanzees), multiple males reside with multiple females. In these species females are often sexually promiscuous, sometimes actively soliciting multiple males for sex. This is probably mostly a matter of confusing paternity sufficiently to suppress the threat of infanticide. There’s a general lesson here: female promiscuity generally has different evolutionary roots than male promiscuity.