Tag Archives: birds

A bear there was, a bear, a bear

50.2-47.6 Million years ago

The end-Cretaceous mass extinction knocked off not only the dinosaurs (except for birds), but also air-breathing marine predators like mososaurs and plesiosaurs. Birds and mammals started moving into the empty niche: penguins from early on, and eventually whales.
penguins

(Cartoon by Sam Gross. Not scientifically accurate.)

People around the world seem to be naturally inclined to distinguish major animal life forms according to whether they walk, fly, swim, slither, or creep, so evolutionary shifts in modes of travel – the origin of flight, the return to the sea – really catch people’s imagination – and provoke Creationists. The whale story is particularly dramatic. When Darwin was tried to account for the evolution of whales from a land-dwelling ancestor, he cited accounts of bears swimming and feeding in water, and wrote “I can see no difficulty in a race of bears being rendered, by natural selection, more and more aquatic in their structure and habits, with larger and larger mouths, till a creature was produced as monstrous as a whale.” This statement attracted so much ridicule that Darwin took it out of later editions of The Origin of Species. But he turns out to have been very much on target. We now have a great sequence of whale ancestors. The sequence runs from today’s Pakicetus — a wolf size meat-and-fish eater that splashed along the shores of the ancient Tethys sea separating Africa from Eurasia — to the “walking whale,” Ambulocetus, and on to true whales. Darwin was sort of on the right track thinking of bears, but anatomy and genetics put the ancestors of whales firmly among artiodactyls – hooved animals including hippos, pigs, and cows.

Advertisements

The last of (most of) the dinosaurs

66.5-63.0 Mya

The end-Cretaceous extinction isn’t the biggest ever, but it’s the one everybody knows about. The Disney movie Fantasia (1940) did a version of the event, set to Stravinsky (and mixing up Jurassic and Cretaceous dinosaurs). In Terence Malik’s movie The Tree of Life, a predatory dinosaur discovers compassion in an encounter with a hadrosaur just before all their kind are wiped out by an asteroid: mass extinction meets the Book of Job.

The discovery that dinosaurs (and about 70% of all species in total) probably went extinct as a result of an extraterrestrial impact did more than anything else to bolster catastrophism. For most of the history of modern geology, geologists have mostly argued instead for uniformitarianism: the same slow processes we see today caused past geological and evolutionary changes. When evidence for an impact was first discovered – a thin layer of iridium, presumably extraterrestrial — paleontologists were pretty uniformly hostile: no physicist was going to tell them how to do science. But by now the evidence is overwhelming that the asteroid impact that left the Chixculub crater, in what is now the Yucatan, was largely responsible for the end-Cretaceous extinctions (although the volcanic eruptions that created the Deccan traps in India may also have played a role).

But at the same time that evidence has increasingly vindicated the catastrophist position, new discoveries in paleontology have increasingly brought home that one group of dinosaurs survived the extinction. Most people think of birds and dinosaurs as two quite distinct kinds of animal. But birds are just as much dinosaurs as bats are mammals. Many dinosaurs had many of the distinctive features of birds – warm-bloodedness and high metabolic rates (probably), wishbones, an advanced respiratory system, feathers (sometimes brightly colored, sometimes used for courtship), and parental care for nests of eggs and juveniles. It’s even possible that some flightless dinosaurs, like the turkey-sized Caudipteryx, were secondarily flightless, descended from flying ancestors like Archeopteryx. We don’t have to hope for The Lost World or Jurassic Parkto come true to see living dinosaurs; a trip to the park, with The Sibley Guide to Birds in hand, will do it.

The People of the Wind

146-139 million years ago

John W. Campbell, the editor of Astounding Science Fiction magazine, used to challenge writers with new premises. One of his challenges was to imagine an alien that is to mammals as mammals are to reptiles. Science fiction writer Poul Anderson took up this challenge by inventing the Ythri, flying intelligent aliens of the planet Avalon, for his novel The People of the Wind. The Ythri were able to support the high metabolisms necessary for flight because they had a special system for supercharging their bloodstreams with extra oxygen.

Since Anderson’s time, we’ve learned that birds – and some dinosaurs – are actually somewhat Ythri-like. To begin with, consider non-dinosaur reptiles, like lizards: their sprawling posture means that their legs compress and expand their lungs as they run, so they can’t run and breathe at the same time. (David Carrier, a biologist at the University of Utah, was a main guy to figure this out.) If you had traveled back in time to the Paleozoic, before the dinosaurs took over, and if you had good endurance training, you would have found the hunting easy, because the sprawling reptiles of the time would not have been able to run away for more than a short sprints. The predators to worry about would have been ambush hunters, not endurance hunters.

Dinosaurs got around these constraints in the first place by running bipedally (although some later reverted to quadrupedalism). And it now looks like at least some of them also had the sort of respiration we find in birds. Lungs are only part of birds’ respiratory systems. Birds also have an extensive network of air sacs running through their bodies, and even air passages in their bones. Air moves in both directions, in and out, like a bellows, through the air sacs, but only one direction through the lungs. This allows for more efficient circulation than mammalian lungs, where air has to move both in and out of the lungs. Just recently (2008), it’s been shown that Allosaurus, only distantly related to birds, had the same system, so it was probably widespread among dinosaurs. This breathing system may have helped dinosaurs to survive low-oxygen crises at the end of the Triassic, and flourish in the low oxygen Jurassic and Cretaceous. It may also have helped one group of dinosaurs to evolve into birds.

Anderson’s book isn’t just about respiratory physiology. It’s also about perennial issues of loyalty and identity. Avalon also has human settlers, who have so absorbed Ythri values — some of them even yearning, impossibly, to be Ythri — that they fight for an independent Avalon against an expanding Terran Empire. (Compare the movie Avatar.)

We’ll have more to say about bipedalism and breathing — and language — when human evolution comes up.

Archaeopteryx, Bird, Fish, Snake

154-147 million years ago

The first Archaeopteryx discovered, found in 1861, is the most famous fossil ever (barring maybe some close human relations). It came at the right time, providing dramatic evidence for the theory of evolution.

archaeopteryx

There may be psychological reasons why Archaeopteryx had the impact it did. Here’s my argument anyway:

According to Jorge Luis Borges, the following is a classification of animals found in a Chinese Encyclopedia, the Celestial Emporium of Benevolent Knowledge.

  • Those that belong to the Emperor
  • Embalmed ones
  • Those that are trained
  • Suckling pigs
  • Mermaids (or Sirens)
  • Fabulous ones
  • Stray dogs
  • Those that are included in this classification
  • Those that tremble as if they were mad
  • Innumerable ones
  • Those drawn with a very fine camel hair brush
  • Et cetera
  • Those that have just broken a flower vase
  • Those that, at a distance, resemble flies

Although some scholars have taken this list seriously (Hi, Michel Foucault!), there’s no evidence that this is anything but a Borgesian joke. Anthropologists have actually spent a lot of time investigating the principles underlying native categorizations of living things, and found they are not nearly as off-the-wall as Borges’ list. These categorizations obey some general principles, not quite the same as modern biologists follow, but not irrational either. (Naming Nature: The Clash Between Instinct and Science is good popular review of ethno-biology, the branch of anthropology that studies different cultures’ theories of biology and systems of classification Did you know there are specialized brain areas that handle animal taxonomy? Or try here for a scholarly treatment.)

At the highest level is usually a distinction between plants and animals. This doesn’t necessarily match the biologists’ distinction between Plantae and Animalia, but rather usually follows a distinction between things that don’t and do move under their own power. Even babies seem to make a big distinction between shapes on a screen that get passively pushed around, and shapes that move on their own. i.e. are animated.

Among larger animals (non-bugs/worms) the first large scale groups to receive a label of their own are almost always birds, fish, and snakes, in no particular order. These categories are telling: each represents a variety of locomotion (flying, swimming, slithering) other than the stereotypical mammalian walking/running. (Many folk classifications lump bats with birds and whales with fish, and they may also separate flightless birds like the cassowary from others.) So whether a creature moves on its own, and how it moves are central to folk categorizations of living kinds, even if not to modern scientific taxonomy. And so finding an animal that seems to be a missing link between two (psychologically) major domains of life — birds and terrestrial animals — is going to be a Big Deal, cognitively, upsetting people’s ideas that it takes God’s miraculous intervention to create animals that fly, or to condemn the Serpent to slither.

The last of (most of) the dinosaurs

The end-Cretaceous extinction isn’t the biggest ever, but it’s the one everybody knows about. The Disney movie Fantasia (1940) did a version of the event, set to Stravinsky (and mixing up Jurassic and Cretaceous dinosaurs). In Terence Malik’s movie The Tree of Life, a predatory dinosaur discovers compassion in an encounter with a hadrosaur just before all their kind are wiped out by an asteroid: mass extinction meets the Book of Job.

The discovery that dinosaurs (and about 70% of all species in total) probably went extinct as a result of an extraterrestrial impact did more than anything else to bolster catastrophism. For most of the history of modern geology, geologists have mostly argued instead for uniformitarianism: the same slow processes we see today caused past geological and evolutionary changes. When evidence for an impact was first discovered – a thin layer of iridium, presumably extraterrestrial — paleontologists were pretty uniformly hostile: no physicist was going to tell them how to do science. But by now the evidence is overwhelming that the asteroid impact that left the Chixculub crater, in what is now the Yucatan, was largely responsible for the end-Cretaceous extinctions (although the volcanic eruptions that created the Deccan traps in India may also have played a role).

But at the same time that evidence has increasingly vindicated the catastrophist position, new discoveries in paleontology have increasingly brought home that one group of dinosaurs survived the extinction. Most people think of birds and dinosaurs as two quite distinct kinds of animal. But birds are just as much dinosaurs as bats are mammals. Many dinosaurs had many of the distinctive features of birds – warm-bloodedness and high metabolic rates (probably), wishbones, an advanced respiratory system, feathers (sometimes brightly colored, sometimes used for courtship), and parental care for nests of eggs and juveniles. It’s even possible that some flightless dinosaurs, like the turkey-sized Caudipteryx, were secondarily flightless, descended from flying ancestors like Archeopteryx. We don’t have to hope for The Lost World or Jurassic Park to come true to see living dinosaurs; a trip to the park, with The Sibley Guide to Birds in hand, will do it.

Archaeopteryx, Bird, Fish, Snake

The first Archaeopteryx discovered, found in 1861, is the most famous fossil ever (barring maybe some close human relations). It came at the right time, providing dramatic evidence for the theory of evolution.

archaeopteryx

There may be psychological reasons why Archaeopteryx had the impact it did. Here’s my argument anyway:

According to Jorge Luis Borges, the following is a classification of animals found in a Chinese Encyclopedia, the Celestial Emporium of Benevolent Knowledge.

  • Those that belong to the Emperor
  • Embalmed ones
  • Those that are trained
  • Suckling pigs
  • Mermaids (or Sirens)
  • Fabulous ones
  • Stray dogs
  • Those that are included in this classification
  • Those that tremble as if they were mad
  • Innumerable ones
  • Those drawn with a very fine camel hair brush
  • Et cetera
  • Those that have just broken a flower vase
  • Those that, at a distance, resemble flies

Although some scholars have taken this list seriously (Hi, Michel Foucault!), there’s no evidence that this is anything but a Borgesian joke. Anthropologists have actually spent a lot of time investigating the principles underlying native categorizations of living things, and found they are not nearly as off-the-wall as Borges’ list. These categorizations obey some general principles, not quite the same as modern biologists follow, but not irrational either. (Naming Nature: The Clash Between Instinct and Science is good popular review of ethno-biology, the branch of anthropology that studies different cultures’ theories of biology and systems of classification Did you know there are specialized brain areas that handle animal taxonomy? Or try here for a scholarly treatment.)

At the highest level is usually a distinction between plants and animals. This doesn’t necessarily match the biologists’ distinction between Plantae and Animalia, but rather usually follows a distinction between things that don’t and do move under their own power. Even babies seem to make a big distinction between shapes on a screen that get passively pushed around, and shapes that move on their own. i.e. are animated.

Among larger animals (non-bugs/worms) the first large scale groups to receive a label of their own are almost always birds, fish, and snakes, in no particular order. These categories are telling: each represents a variety of locomotion (flying, swimming, slithering) other than the stereotypical mammalian walking/running. (Many folk classifications lump bats with birds and whales with fish, and they may also separate flightless birds like the cassowary from others.) So whether a creature moves on its own, and how it moves are central to folk categorizations of living kinds, even if not to modern scientific taxonomy. And so finding an animal that seems to be a missing link between two (psychologically) major domains of life — birds and terrestrial animals — is going to be a Big Deal, cognitively, upsetting people’s ideas that it takes God’s miraculous intervention to create animals that fly, or to condemn the Serpent to slither.

The People of the Wind

163-154 million years ago

John W. Campbell, the editor of Astounding Science Fiction magazine, used to challenge writers with new premises. One of his challenges was to imagine an alien that is to mammals as mammals are to reptiles. Science fiction writer Poul Anderson took up this challenge by inventing the Ythri, flying intelligent aliens of the planet Avalon, for his novel The People of the Wind. The Ythri were able to support the high metabolisms necessary for flight because they had a special system for supercharging their bloodstreams with extra oxygen.

Since Anderson’s time, we’ve learned that birds – and some dinosaurs – are actually somewhat Ythri-like. To begin with, consider non-dinosaur reptiles, like lizards: their sprawling posture means that their legs compress and expand their lungs as they run, so they can’t run and breathe at the same time. (David Carrier, a biologist at the University of Utah, was a main guy to figure this out.) If you had traveled back in time to the Paleozoic, before the dinosaurs took over, and if you had good endurance training, you would have found the hunting easy, because the sprawling reptiles of the time would not have been able to run away for more than a short sprints. The predators to worry about would have been ambush hunters, not endurance hunters.

Dinosaurs got around these constraints in the first place by running bipedally (although some later reverted to quadrupedalism). And it now looks like at least some of them also had the sort of respiration we find in birds. Lungs are only part of birds’ respiratory systems. Birds also have an extensive network of air sacs running through their bodies, and even air passages in their bones. Air moves in both directions, in and out, like a bellows, through the air sacs, but only one direction through the lungs. This allows for more efficient circulation than mammalian lungs, where air has to move both in and out of the lungs. Just recently (2008), it’s been shown that Allosaurus, only distantly related to birds, had the same system, so it was probably widespread among dinosaurs. This breathing system may have helped dinosaurs to survive low-oxygen crises at the end of the Triassic, and flourish in the low oxygen Jurassic and Cretaceous. It may also have helped one group of dinosaurs to evolve into birds.

Anderson’s book isn’t just about respiratory physiology. It’s also about perennial issues of loyalty and identity. Avalon also has human settlers, who have so absorbed Ythri values — some of them even yearning, impossibly, to be Ythri — that they fight for an independent Avalon against an expanding Terran Empire. (Compare the movie Avatar.)

We’ll have more to say about bipedalism and breathing — and language — when human evolution comes up.