Tag Archives: atoms

Better living through chemistry

2.72-2.58 billion years ago

Below I discuss some interesting parallels between chemistry on the one hand, and linguistics on the other. Remarkably, a recent article makes a strong case that there is an actual historical connection between the science of linguistics and the science of chemistry. Specifically, Mendeleev’s construction of the Periodic Table of Elements was probably influenced by Pāṇini’s classic generative grammar of Sanskrit, the Aṣṭādhyāyī. This was written somewhere around 500-350 BCE. It has been said to be as central to India’s intellectual tradition as Euclid’s Elements is to the West’s. It probably reached the attention of Mendeleev thanks to the work of his friend and colleague, the Indologist and philologist Otto von Böhtlingk, who translated it.

[F]oundational to the Aṣṭādhyāyī was a two-dimensional, periodic alphabet, which may have intrigued Mendeleev as he struggled to create his own periodic array.

The physicist Eugene Wigner wrote about “the unreasonable effectiveness of mathematics in the natural sciences.” (Here is a cute recent example where repeated rebounding collisions produce successively close approximations of pi.) Perhaps Mendeleev’s debt to Pāṇini via von Böhtlingk is an example of the unreasonable effectiveness of linguistics.

Here’s more on the parallels:

Chemistry plays a big role once Earth forms. Different mineral species appear, with different chemical compositions. Magnesium-heavy olivine sinks to the lower mantle of the Earth. Aluminum-rich feldspars float to the top.

Chemistry is an example of what William Abler calls “the particulate principle of self-diversifying systems,” what you get when a collection of discrete units (atoms) can combine according to definite rules to create larger units (molecules) whose properties aren’t just intermediate between the constituents. Paint is not an example. Red paint plus white paint is just pink paint. But atoms and molecules are: two moles of hydrogen gas plus one mole of oxygen gas, compounded, make something very different, one mole of liquid water.

A lot of important chemical principles are summed up in the periodic table.

periodictable copy

On the far right are atoms that have their electron shells filled, and don’t feel like combining with anyone. Most, but not all the way, to the right are atoms with almost all their shells filled, just looking for an extra electron or two. (Think oxygen, O, with slots for two extra electrons). On the left are atoms with a few extra electrons they can share. (Think hydrogen, H, each atom with an extra electron it’s willing to share with, say, oxygen.) In the middle are atoms that could go either way: polymorphously perverse carbon, C, with four slots to fill and four electrons to share, and metals, that like to pool their electrons in a big cloud, and conduct electricity and heat easily. (Think of Earth’s core of molten iron, Fe, a big electric dynamo.)

Another example of “the particulate principle of self-diversifying systems” is human language. Consider speech sounds, for example. You’ve got small discrete units (phonemes, the sounds we write bpskchsh, and so on) that can combine according to rules to give syllables. Some syllables are possible, according to the rules of English, others not. Star and spikythole and plast, are possible English words, tsar and psyche are not (at least if you pronounce all the consonants, the way Russians or Greeks do), nor tlaps nor bratz (if you actually try to pronounce the z). Thirty years ago appblog, and twerk were not words in the English language, but they were possible words, according to English sound laws.

You can make a periodic table of consonants.

phonemes

Across the top are the different places in the vocal tract where you block the flow of air. Along the left side are different ways of blocking the flow (stopping it completely –t-, letting it leak out –s-, etc.) The table can explain why, for example, we use in for intangible and indelicate, but switch to im for impossible and imbalance. (The table contains sounds we don’t use in English, and uses a special set of signs, the International Phonetic Alphabet, which assigns one letter per phoneme.) This is why a book title like The Atoms of Language makes sense (a good book by the way).

So sometimes the universe gets more complex because already existing stuff organizes itself into complex new patterns  – clumps and swirls and stripes. But sometimes the universe gets more complex because brand new kinds of stuff appear, because a new particulate system comes online: elementary particles combine to make atoms, atoms combine to make molecules, or one set of systems (nucleotides to make genes, amino acids to make proteins) combines to make life, or another set of systems (phonemes to make words, words to make phrases and sentences) combines to make language.

Solution unsatisfactory

December 1943 – January 1949

In 1940, when the world war in Europe was mostly England versus Germany, the science fiction writer Robert Heinlein wrote a short story called Solution Unsatisfactory (published in 1941). Heinlein anticipated the development of nuclear weaponry, although in his version, the weapon took the form of a radioactive dust that could easily wipe out a whole city, instead of a bomb. In the story, the new superweapon raises the horrific possibility of mass annihilation. The main character, Colonel Clyde Manning, summarizes it this way:

Here is the probable future, as I see it, potential in the smashing of the atom …. Some power makes a supply of the dust. They’ll hit us first to try to knock us out … But our army … would have planes and a supply of dust somewhere where the first dusting wouldn’t touch them. Our boys would bravely and righteously proceed to poison their big cities. Back and forth it would go until the organization of each country had broken down so completely that they were no longer able to maintain a sufficiently high level of industrialization to service planes and manufacture dust. … The other nations would get in the game. It’s a vicious circle that cannot possibly be stopped until the entire planet has dropped to a level of economy too low to support the techniques necessary to maintain it. My best guess is that such a point would be reached when approximately three-quarters of the world’s population were dead of dust, disease, or hunger, and culture reduced to the peasant-and-village type.

After the dust has been used to force Germany to surrender, and after a brief nuclear war between the United States and the “Eurasian Union” (clearly the Soviets), Manning takes the only way out of the trap. He uses the new weapon to establish a world-wide military dictatorship, with a monopoly of airpower and atomic weaponry, staffed by an international military force independent of any one nation and under his personal command. The narrator concludes:

For myself, I can’t be happy in a world where any man or group of men, has the power of death over you and me, our neighbors, every human, every animal, every living thing. I don’t like anyone to have that kind of power. And neither does Manning.

Curiously, Bertrand Russell, later famous as a better-Red-than-Dead disarmament campaigner, followed the same logic in The Atomic Bomb and the Prevention of War, published in 1946. In his view, the future might hold an atomic war in which “destruction will continue until disorganization makes the further manufacture of atomic bombs impossible.” But there was a more hopeful alternative:

It is entirely clear that there is only one way in which great wars can be permanently prevented, and that is the establishment of an international government with a monopoly of serious armed force. An international government, if it is to be able to preserve peace, must have the only atomic bombs, the only plant for producing them, the only air force, the only battleships … Its atomic staff, its air squadrons, the crews of its battleships, and its infantry regiments must … be composed of men of many different nations; there must be no possibility of the development of national feeling in any unit larger than a company.

Sometimes you can’t make an omelet without breaking eggs, or at least threatening to break them:

Stalin … will have to be persuaded … to permit the creation of an effective international government. … The only possible way … is by a mixture of cajolery and threat, making it plain to the Soviet authorities that refusal will entail disaster, while acceptance will not.

I don’t know if Russell was a science fiction fan. (He did write some science fiction stories, which are not any better than Heinlein’s stabs at philosophy.) His agreement with Heinlein is more likely a case of great minds thinking alike – and in this case a little too rationally – about human affairs.

Better living through chemistry

3.20-3.04 billion years ago

Chemistry plays a big role once Earth forms. Different mineral species appear, with different chemical compositions. Magnesium-heavy olivine sinks to the lower mantle of the Earth. Aluminum-rich feldspars float to the top.

Chemistry is an example of what William Abler calls “the particulate principle of self-diversifying systems,” what you get when a collection of discrete units (atoms) can combine according to definite rules to create larger units (molecules) whose properties aren’t just intermediate between the constituents. Paint is not an example. Red paint plus white paint is just pink paint. But atoms and molecules are: two moles of hydrogen gas plus one mole of oxygen gas, compounded, make something very different, one mole of liquid water.

A lot of important chemical principles are summed up in the periodic table.

periodictable copy

On the far right are atoms that have their electron shells filled, and don’t feel like combining with anyone. Most, but not all the way, to the right are atoms with almost all their shells filled, just looking for an extra electron or two. (Think oxygen, O, with slots for two extra electrons). On the left are atoms with a few extra electrons they can share. (Think hydrogen, H, each atom with an extra electron it’s willing to share with, say, oxygen.) In the middle are atoms that could go either way: polymorphously perverse carbon, C, with four slots to fill and four electrons to share, and metals, that like to pool their electrons in a big cloud, and conduct electricity and heat easily. (Think of Earth’s core of molten iron, Fe, a big electric dynamo.)

Another example of “the particulate principle of self-diversifying systems” is human language. Consider speech sounds, for example. You’ve got small discrete units (phonemes, the sounds we write bpskchsh, and so on) that can combine according to rules to give syllables. Some syllables are possible, according to the rules of English, others not. Star and spikythole and plast, are possible English words, tsar and psyche are not (at least if you pronounce all the consonants, the way Russians or Greeks do), nor tlaps nor bratz (if you actually try to pronounce the z). Thirty years ago appblog, and twerk were not words in the English language, but they were possible words, according to English sound laws.

You can make a periodic table of consonants.

phonemes

Across the top are the different places in the vocal tract where you block the flow of air. Along the left side are different ways of blocking the flow (stopping it completely –t-, letting it leak out –s-, etc.) The table can explain why, for example, we use in for intangible and indelicate, but switch to im for impossible and imbalance. (The table contains sounds we don’t use in English, and uses a special set of signs, the International Phonetic Alphabet, which assigns one letter per phoneme.) This is why a book title like The Atoms of Language makes sense (a good book by the way).

So sometimes the universe gets more complex because already existing stuff organizes itself into complex new patterns  – clumps and swirls and stripes. But sometimes the universe gets more complex because brand new kinds of stuff appear, because a new particulate system comes online: elementary particles combine to make atoms, atoms combine to make molecules, or one set of systems (nucleotides to make genes, amino acids to make proteins) combines to make life, or another set of systems (phonemes to make words, words to make phrases and sentences) combines to make language.

The curve of binding energy

9.85 – 9.32 billion years ago

More on stardust and us.

Looking at the abundance of different elements in the universe, we get the following:

element abundances

Note that the vertical scale is logarithmic, so there is vastly more hydrogen and helium in the universe than any other element. As noted in the last post, all the elements except hydrogen and helium were formed after the Big Bang, spewed out by supernovas and the collisions of neutron stars. In general, heavy elements are less abundant because it takes more steps to produce heavy elements than light ones. But the curve is not smooth. The lightest elements after hydrogen and helium (lithium, beryllium, boron) are relatively rare, because they get used up in the nucleosynthesis of heavier elements. And there is a saw tooth pattern in the chart, because nucleosynthesis favors atoms with even numbers of protons. So we get lots of oxygen, magnesium, silicon, and iron, the main constituents of our planet. Lots of carbon too. Finally, iron (Fe) is more than 1000 times more abundant than might be expected based on a smooth curve. Iron nuclei are especially stable because binding energy, the energy that would be required to take the nucleus apart into its constituent protons and neutrons, reaches a maximum with iron. Here’s the famous curve of curve of binding energy (nucleons are protons and neutrons):

curve of binding energy

An implication of this curve is that if you can split a really heavy nucleus, of Uranium-235 say, into smaller nuclei (but still heavier than iron), you will release energy equal to the vertical difference between U-235 and its lighter fission products (not shown) on the vertical scale. This is lots of energy, way more than you get from breaking or forming molecular bonds in ordinary chemical reactions. And if you can fuse two light nuclei, of hydrogen say, into a larger nucleus, you can get even more energy. When we split uranium, we are recovering some of the energy that a star put into synthesizing elements heavier than iron, before or as it went supernova. When we fuse hydrogen, we are extracting energy left over from the Big Bang that no star got around to releasing. (This doesn’t violate the Law of Conservation of Energy, because the negative gravitational potential energy of the universe cancels the positive energy represented by the matter. So the total energy of the universe is zero.)

Starting to figure this all out was part of a scientific revolution that made physics in 1950 look very different from physics in 1900. The new physics resolved a paradox in the study of prehistory. Geologists were pretty confident, based on rates of sedimentation, that the Earth had supported complex life for hundreds of millions of years. But physicists couldn’t see how the sun could have kept shining for so long. The geologists were right about deep time; it took new physics to understand that the sun got its energy from fusing hydrogen to helium (via some intermediate steps).

As the scientific revolution in atomic physics was picking up steam, it was natural to assume that it would be followed by a revolution in technology. After all, earlier scientific revolutions in the understanding of masses and gases, atoms and molecules, and electrons and electromagnetism, had been followed by momentous innovations in technology: the steam engine, artificial fertilizers, electrification, radio, to name just a few. But in some ways, the Atomic Age hasn’t lived up to early expectations. The atom bomb brought an earlier end to the Second World War, but didn’t change winners and losers. The bomb was never used again in war, and it’s a matter for debate how much the atom bomb and the hydrogen bomb changed the course of the Cold War. Nuclear energy now generates a modest 11% of the world’s electricity (although this number had better go up in the future if we’re serious about curbing carbon dioxide emissions). And a lot of ambitious early proposals for harnessing the atom never got anywhere. Project Plowshare envisioned using nuclear explosions for enormous civil engineering projects, digging new caves, canals, and harbors. Even more audacious was Project Orion, which developed plans for a rocket propelled by nuclear explosions. Some versions of Orion could have carried scores of people and enormous payloads throughout the solar system. Freeman Dyson, a physicist who worked on the project, said “Our motto was ‘Mars by 1965, Saturn by 1970.’”

On the purely technical side these plans were feasible. There were concerns about fallout, but the problems were not insurmountable. Nevertheless both Plowshare and Orion were cancelled. Regarding Orion, Dyson said “… this is the first time in modern history that a major expansion of human technology has been suppressed for political reasons.” The history of the Atomic Age  and its missed opportunities is one more refutation of pure technological determinism. How or even whether a new technology is exploited depends on social institutions, politics, and cultural values.

Better living through chemistry

3.20-3.04 billion years ago

Chemistry plays a big role once Earth forms. Different mineral species appear, with different chemical compositions. Magnesium-heavy olivine sinks to the lower mantle of the Earth. Aluminum-rich feldspars float to the top.

Chemistry is an example of what William Abler calls “the particulate principle of self-diversifying systems,” what you get when a collection of discrete units (atoms) can combine according to definite rules to create larger units (molecules) whose properties aren’t just intermediate between the constituents. Paint is not an example. Red paint plus white paint is just pink paint. But atoms and molecules are: two moles of hydrogen gas plus one mole of oxygen gas, compounded, make something very different, one mole of liquid water.

A lot of important chemical principles are summed up in the periodic table.

periodictable copy

On the far right are atoms that have their electron shells filled, and don’t feel like combining with anyone. Most, but not all the way, to the right are atoms with almost all their shells filled, just looking for an extra electron or two. (Think oxygen, O, with slots for two extra electrons). On the left are atoms with a few extra electrons they can share. (Think hydrogen, H, each atom with an extra electron it’s willing to share with, say, oxygen.) In the middle are atoms that could go either way: polymorphously perverse carbon, C, with four slots to fill and four electrons to share, and metals, that like to pool their electrons in a big cloud, and conduct electricity and heat easily. (Think of Earth’s core of molten iron, Fe, a big electric dynamo.)

Another example of “the particulate principle of self-diversifying systems” is human language. Consider speech sounds, for example. You’ve got small discrete units (phonemes, the sounds we write bpskchsh, and so on) that can combine according to rules to give syllables. Some syllables are possible, according to the rules of English, others not. Star and spikythole and plast, are possible English words, tsar and psyche are not (at least if you pronounce all the consonants, the way Russians or Greeks do), nor tlaps nor bratz (if you actually try to pronounce the z). Thirty years ago appblog, and twerk were not words in the English language, but they were possible words, according to English sound laws.

You can make a periodic table of consonants.

phonemes

Across the top are the different places in the vocal tract where you block the flow of air. Along the left side are different ways of blocking the flow (stopping it completely –t-, letting it leak out –s-, etc.) The table can explain why, for example, we use in for intangible and indelicate, but switch to im for impossible and imbalance. (The table contains sounds we don’t use in English, and uses a special set of signs, the International Phonetic Alphabet, which assigns one letter per phoneme.) This is why a book title like The Atoms of Language makes sense (a good book by the way).

So sometimes the universe gets more complex because already existing stuff organizes itself into complex new patterns  – clumps and swirls and stripes. But sometimes the universe gets more complex because brand new kinds of stuff appear, because a new particulate system comes online: elementary particles combine to make atoms, atoms combine to make molecules, or one set of systems (nucleotides to make genes, amino acids to make proteins) combines to make life, or another set of systems (phonemes to make words, words to make phrases and sentences) combines to make language.

The curve of binding energy

More stardust

Looking at the abundance of different elements in the universe, we get the following:

element abundances

Note that the vertical scale is logarithmic, so there is vastly more hydrogen and helium in the universe than any other element. As noted in the last post, all the elements except hydrogen and helium were formed after the Big Bang, spewed out by supernovas and the collisions of neutron stars. In general, heavy elements are less abundant because it takes more steps to produce heavy elements than light ones. But the curve is not smooth. The lightest elements after hydrogen and helium (lithium, beryllium, boron) are relatively rare, because they get used up in the nucleosynthesis of heavier elements. And there is a saw tooth pattern in the chart, because nucleosynthesis favors atoms with even numbers of protons. So we get lots of oxygen, magnesium, silicon, and iron, the main constituents of our planet. Lots of carbon too. Finally, iron (Fe) is more than 1000 times more abundant than might be expected based on a smooth curve. Iron nuclei are especially stable because binding energy, the energy that would be required to take the nucleus apart into its constituent protons and neutrons, reaches a maximum with iron. Here’s the famous curve of curve of binding energy (nucleons are protons and neutrons):

curve of binding energy

An implication of this curve is that if you can split a really heavy nucleus, of Uranium-235 say, into smaller nuclei (but still heavier than iron), you will release energy equal to the vertical difference between U-235 and its lighter fission products (not shown) on the vertical scale. This is lots of energy, way more than you get from breaking or forming molecular bonds in ordinary chemical reactions. And if you can fuse two light nuclei, of hydrogen say, into a larger nucleus, you can get even more energy. When we split uranium, we are recovering some of the energy that a star put into synthesizing elements heavier than iron, before or as it went supernova. When we fuse hydrogen, we are extracting energy from the Big Bang that no star got around to releasing.

Starting to figure this all out was part of a scientific revolution that made physics in 1950 look very different from physics in 1900. The new physics resolved a paradox in the study of prehistory. Geologists were pretty confident, based on rates of sedimentation, that the Earth had supported complex life for hundreds of millions of years. But physicists couldn’t see how the sun could have kept shining for so long. The geologists were right about deep time; it took new physics to understand that the sun got its energy from fusing hydrogen to helium (via some intermediate steps).

As the scientific revolution in atomic physics was picking up steam, it was natural to assume that it would be followed by a revolution in technology. After all, earlier scientific revolutions in the understanding of masses and gases, atoms and molecules, and electrons and electromagnetism, had been followed by momentous innovations in technology: the steam engine, artificial fertilizers, electrification, radio, to name just a few. But in some ways, the Atomic Age hasn’t lived up to early expectations. The atom bomb brought an earlier end to the Second World War, but didn’t change winners and losers. The bomb was never used again in war, and it’s a matter for debate how much the atom bomb and the hydrogen bomb changed the course of the Cold War. Nuclear energy now generates a modest 11% of the world’s electricity (although this number had better go up in the future if we’re serious about curbing carbon dioxide emissions). And a lot of ambitious early proposals for harnessing the atom never got anywhere. Project Plowshare envisioned using nuclear explosions for enormous civil engineering projects, digging new caves, canals, and harbors. Even more audacious was Project Orion, which developed plans for a rocket propelled by nuclear explosions. Some versions of Orion could have carried scores of people and enormous payloads throughout the solar system. Freeman Dyson, a physicist who worked on the project, said “Our motto was ‘Mars by 1965, Saturn by 1970.’”

On the purely technical side these plans were feasible. There were concerns about fallout, but the problems were not insurmountable. Nevertheless both Plowshare and Orion were cancelled. Dyson said “… this is the first time in modern history that a major expansion of human technology has been suppressed for political reasons.” The history of the Atomic Age  and its missed opportunities is a refutation of pure technological determinism. How or even whether a new technology is exploited depends on social institutions, politics, and cultural values.

Better living through chemistry

3.20-3.04 billion years ago

Chemistry plays a big role once Earth forms. Different mineral species appear, with different chemical compositions. Magnesium-heavy olivine sinks to the lower mantle of the Earth. Aluminum-rich feldspars float to the top.

Chemistry is an example of what William Abler calls “the particulate principle of self-diversifying systems,” what you get when a collection of discrete units (atoms) can combine according to definite rules to create larger units (molecules) whose properties aren’t just intermediate between the constituents. Paint is not an example. Red paint plus white paint is just pink paint. But atoms and molecules are: two moles of hydrogen gas plus one mole of oxygen gas, compounded, make something very different, one mole of liquid water.

A lot of important chemical principles are summed up in the periodic table.

periodictable copy

On the far right are atoms that have their electron shells filled, and don’t feel like combining with anyone. Most, but not all the way, to the right are atoms with almost all their shells filled, just looking for an extra electron or two. (Think oxygen, O, with slots for two extra electrons). On the left are atoms with a few extra electrons they can share. (Think hydrogen, H, each atom with an extra electron it’s willing to share with, say, oxygen.) In the middle are atoms that could go either way: polymorphously perverse carbon, C, with four slots to fill and four electrons to share, and metals, that like to pool their electrons in a big cloud, and conduct electricity and heat easily. (Think of Earth’s core of molten iron, Fe, a big electric dynamo.)

Another example of “the particulate principle of self-diversifying systems” is human language. Consider speech sounds, for example. You’ve got small discrete units (phonemes, the sounds we write bpskchsh, and so on) that can combine according to rules to give syllables. Some syllables are possible, according to the rules of English, others not. Star and spikythole and plast, are possible English words, tsar and psyche are not (at least if you pronounce all the consonants, the way Russians or Greeks do), nor tlaps nor bratz (if you actually try to pronounce the z). Thirty years ago appblog, and twerk were not words in the English language, but they were possible words, according to English sound laws.

You can make a periodic table of consonants.

phonemes

Across the top are the different places in the vocal tract where you block the flow of air. Along the left side are different ways of blocking the flow (stopping it completely –t-, letting it leak out –s-, etc.) The table can explain why, for example, we use in for intangible and indelicate, but switch to im for impossible and imbalance. (The table contains sounds we don’t use in English, and uses a special set of signs, the International Phonetic Alphabet, which assigns one letter per phoneme.) This is why a book title like The Atoms of Language makes sense (a good book by the way).

So sometimes the universe gets more complex because already existing stuff organizes itself into complex new patterns  – clumps and swirls and stripes. But sometimes the universe gets more complex because brand new kinds of stuff appear, because a new particulate system comes online: elementary particles combine to make atoms, atoms combine to make molecules, or one set of systems (nucleotides to make genes, amino acids to make proteins) combines to make life, or another set of systems (phonemes to make words, words to make phrases and sentences) combines to make language.