Steam engine time

1716-1732

The steam engine was a child of seventeenth century science; the Scientific Revolution gave birth to the Industrial Revolution. That’s not at all the conventional story, but David Wootton’s recent book The Invention of Science: A New History of the Scientific Revolution makes the case.

According to the conventional story, the steam engine resulted from the work of generations of inspired tinkerers, ingenious craftsmen with no particular scientific training and no great scientific knowledge. Indeed, according to one historian, “Science owes more to the stream engines than the steam engine owes to science.” (After all, the steam engine did inspire Carnot’s thermodynamic theory.)

But Wooton traces a path from scientific theory to practical application, beginning with the seventeenth century science of vacuum, air and steam pressure. The pioneering scientists here were not just theorists. They built (or at least designed) a number of devices for making use of differences in gas pressures, including an air gun (Boyle), a steam pressure pump (della Porta), and a vacuum-powered piston (von Guericke). Huygens took up the last idea, using an explosion to empty air from a cylinder, through a valve, and then using the partial vacuum to move a piston. This in turn was taken up by Denis Papin, a French Protestant medical doctor and mathematician, who worked as an assistant to Huygens, and then to Boyle. Papin combined scientific knowledge and engineering experience to design several steam engines. None of these was very practical – sadly Papin ended his life in failure and poverty. But the first of them was very similar to the first commercially viable steam engine, produced by Newcomen in 1712 – so similar that many historians have been convinced that Newcomen must have been familiar with Papin’s design.

Up to recently there’s been no convincing account of how Newcomen could have learned of Papin. But now Wooton has discovered the likeliest link, a book by Papin with the unpromising title A Continuation of the New Digester of Bones. The book has been neglected by historians, not surprisingly, but sold well in its own day. It gives plans for a pressure cooker (hence the title). But it also contains detailed descriptions both of vacuum powered piston, and of the use of steam condensation to produce a vacuum: just what Newcomen needed to put together to build his first engine. Wooton writes:

Newcomen’s steam engine is a bit like a locked-room plot in a detective story. Here is a dead body in a locked room: How did the murderer get in and out, and what did he use as a weapon? … We cannot exclude the possibility that Newcomen went to London and met Papin in 1687 … But we do not need to imagine such a meeting. With a copy of the Continuation in his hands, Newcomen would have known almost everything that Papin knew about how to harness atmospheric pressure to build an engine. … From this unintended encounter, I believe, the steam engine was born.

He concludes:

Historians have long debated the extent to which science contributed to the Industrial Revolution. The answer is: far more than they have been prepared to acknowledge. Papin had worked with two of the greatest scientists of the day, Huygens and Boyle. He was a Fellow of the Royal Society and a professor of mathematics. … Newcomen picked up … where Papin began. In doing so he inherited some of the most advanced theories and some of the most sophisticated technology produced in the seventeenth century. … First came the science, then came the technology.

3 thoughts on “Steam engine time

  1. Pingback: The curve of binding energy | Logarithmic History

Leave a comment